Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trường hợp: n là số chẵn
Đặt n=2kn=2k⇒2n+32+42=4k++32k+42k⇒2n+32+42=4k++32k+42k chia cho 3 dư 2 nên không phải là số chính phương
Trường hợp: n là số lẽ.
Với n=1n=1 thì 2n+3n+4n=92n+3n+4n=9 là số chính phương.
Với n≥3n≥3
Đặt n=2t+1(t≥1)⇒2n+3n+4n=2.(4t)+3.(9t)+42t+1n=2t+1(t≥1)⇒2n+3n+4n=2.(4t)+3.(9t)+42t+1 chia cho 4 dư 3 nên không phải là số chính phương.
Vậy ta chọn n=1
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
Giả sử: 2n+3n+4n=a2
=>2n+3n=a2-22n=(a-2n)(a+2n)
=> a-2n=1=> a=2n+1 và a+2n=2n+3n=> a =3n
=>2n+1=3n=>n=1 và a =3
Vậy n =1