K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

(n-n+2)/(n-1) là số nguyên => n-n+2 chia hết cho n-1

=> n(n2-1)+2 chia hết n-1

=> n(n+1)(n-1)+2 chia hết n-1

=> 2 chia hết n-1 => n-1 thuộc Ư(2)={-2;-1;1;2}

=>n=-1;0;2;3

1 tháng 9 2017

để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

1 tháng 9 2017

Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.

31 tháng 8 2015

Nếu \(n=0\to n^{1997}+n^{1975}+1=1\) không phải là số nguyên tố.

Xét  \(n\) là số nguyên dương. Ta có  \(n^{1997}-n^2=n^2\left(n^{3\times665}-1\right)\vdots\left(n^3\right)^{665}-1\vdots n^3-1\vdots n^2+n+1.\) 

Suy ra \(n^{1997}-n^2\vdots n^2+n+1.\)  
Tương tự, \(n^{1975}-n=n\left(n^{3\times658}-1\right)\vdots\left(n^3\right)^{658}-1\vdots n^3-1\vdots n^2+n+1.\)
Từ đó ta suy ra \(n^{1997}+n^{1975}+1=\left(n^{1997}-n^2\right)+\left(n^{1975}-n\right)+\left(n^2+n+1\right)\vdots n^2+n+1.\)
Vì \(n^{1997}+n^{1975}+1\)  là số nguyên tố (chỉ có hai ước dương là 1 và chính nó) và \(n^2+n+1>1\), nên \(n^{1997}+n^{1975}+1=n^2+n+1.\) Suy ra \(\left(n^{1997}-n^2\right)+\left(n^{1975}-n\right)=0.\) Do \(n\)là số nguyên dương nên \(\left(n^{1997}-n^2\right)\ge0,\left(n^{1975}-n\right)\ge0.\) Vậy \(n=1.\)


Thử lại với \(n=1\to n^{1997}+n^{1975}+1=3\) là số nguyên tố. 

Đáp số \(n=1.\)

30 tháng 8 2020

dạng này đc gọi là dạng j thế câuk

13 tháng 5 2018

Xét n > 9 , ta có 

\(S=2^9+2^{13}+2^n=2^9\left(1+2^{13}+2^{n-9}\right)\)

Vì \(\left(1+2^{13}+2^{n-9}\right)\)lẻ nên S chia hết cho 29 nhưng không chia hết cho 210 nên không là số chính phương

Xét n < 0 , ta có 

\(S=2^9+2^{13}+2^n=2^n\left(1+2^{13-n}+2^{9-n}\right)\)

Vì \(\left(1+2^{13-n}+2^{9-n}\right)\) lẻ mà S là số chính phương nên 2n là số chính phương => n chẵn => \(n\in\left\{2;4;6;8\right\}\)

Khi đó , S là số chính phương , 2n là số chính phương => \(\left(1+2^{13-n}+2^{9-n}\right)\) là số chính phương

Số chính phương lẻ luôn có chữ số tận cùng là 1,9,5 

Ta xét từng trường hợp nhưng nhận thấy không có trường hợp nào thõa mãn 

Vậy với n = 9 thì ............