Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (6a + 1) chia hết cho (3a - 1).
=>(6a + 1) chia hết cho (3a - 1) + (3a - 1)
=>(6a +1) chia hết cho (6a - 2)
=>(6a + 1 + 2 - 2) chia hết cho (6a - 2)
=>(6a - 2 + 3) chia hết cho (6a - 2)
=>3 chia hết cho (6a - 2)
=>(6a - 2) \(\in\)Ư(3) = (1;3)
=>a=\(\varnothing\)
Vậy a=\(\varnothing\)
đúng nhé
6a + 1 chia hết cho 3a - 1
\(\Rightarrow\) 6a - 2 + 3 chia hết cho 3a - 1
\(\Rightarrow\)2 . ( 3a - 1 ) + 3 chia hết cho 3a - 1
Mà 2 . ( 3a - 1 ) + 3 chia hết cho 3a - 1
\(\Rightarrow\) 3 chia hết cho 3a - 1
\(\Rightarrow\) 3a - 1 \(\in\) Ư(3) = { -3 ; -1 ; 1 ; 3 }
Ta có :
3a - 1 | -3 | -1 | 1 | 3 |
3a | -2 | 0 | 2 | 4 |
a | loại | 0 | loại | loại |
Vậy a = 0 .
a) n khác 1
b) n-1(5) = -1;1;-5;5
n= 0; 2; -4;6
ai cung k hieu chỉ vai bạn gioi hieu moi thay
dc hay
Có \(4n-5⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
Do \(2\left(2n-1\right)⋮2n-1\)
\(\Rightarrow-3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(-3\right)\)
\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
Ta có bảng sau :
\(2n-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(1\) | \(0\) | \(2\) | \(-1\) |
Mời bạn đọc lại Báo Toán Tuổi Thơ THCs số gần đây có bài này nhá
Kí hiệu S(n) là tổng các chữ số của n , tìm số nguyên dương n sao cho :S(n)=n^2−2013n+6 5* luôn ạ?
S(n)=n^2−2013n+6 = n(n - 2013) + 6
n ≤ 2012 thì n(n - 2013) ≤ - 2012 → S(n) < 0 loại
n = 2013 → S(n) = 6 thỏa mãn
n > 2013 không có số n nào có tổng các chữ số =n(n - 2013) loại
Vậy n = 2013
Ta có: \(6a+1=2\left(3a-1\right)+3\)
Vì \(2\left(3a-1\right)⋮\left(3a-1\right)\Rightarrow3⋮\left(3a-1\right)\)
\(\Rightarrow3a-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Nếu 3a - 1 = 1 thì 3a = 2 => a = 2/3
Nếu 3a - 1 = -1 thì 3a = 0 => a = 0
Nếu 3a - 1 = 3 thì 3a = 4 => a = 4/3
Nếu 3a - 1 = -3 thì 3a = -2 => a = -2/3
Mà \(a\in Z\Rightarrow a=0\)
Vậy a = 0
\(\left(6a+1\right)⋮\left(3a-1\right)\)
\(\Rightarrow\left[\left(6a+1\right)-2\left(3a-1\right)\right]⋮\left(3a-1\right)\)
\(\Rightarrow\left(6a+1-6a+2\right)⋮\left(3a-1\right)\)
\(\Rightarrow3⋮\left(3a-1\right)\)
\(\Rightarrow3a-1\inƯ\left(3\right)\)
\(\Rightarrow3a-1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow3a\in\left\{\pm2;0;4\right\}\)
\(\Rightarrow a\in\left\{\frac{2}{3};0;\frac{4}{3};-\frac{2}{3}\right\}\)
Mà \(a\in Z\)
\(\Rightarrow a=0\)