\(\left(m^2+2\right)cos^2x+4msinx.cosx=m^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2022

\(\Leftrightarrow\left(m^2+2\right)2cos^2x+4m.2sinx.cosx=2m^2+6\)

\(\Leftrightarrow\left(m^2+2\right)\left(cos2x+1\right)+4m.sin2x=2m^2+6\)

\(\Leftrightarrow\left(m^2+2\right)cos2x+4m.sin2x=m^2+4\)

Pt đã cho vô nghiệm khi và chỉ khi:

\(\left(m^2+2\right)^2+\left(4m\right)^2< \left(m^2+4\right)^2\)

\(\Leftrightarrow12m^2< 12\)

\(\Rightarrow-1< m< 1\)

NV
1 tháng 9 2020

Hàm xác định trên R khi và chỉ khi \(cos^2x-\left(m+2\right)cosx+2m\ge0\) ;\(\forall x\)

\(\Leftrightarrow cos^2x-2cosx-\left(m.cosx-2m\right)\ge0\)

\(\Leftrightarrow cosx\left(cosx-2\right)-m\left(cosx-2\right)\ge0\)

\(\Leftrightarrow\left(cosx-m\right)\left(cosx-2\right)\ge0\) ;\(\forall x\) (1)

\(cosx\le1\Rightarrow cosx-2< 0\)

\(\left(1\right)\Leftrightarrow cosx-m\le0\) ;\(\forall x\)

\(\Leftrightarrow m\ge cosx;\) \(\forall x\Leftrightarrow m\ge max\left(cosx\right)=1\)

Vậy \(m\ge1\)

1 tháng 9 2020

thank ban nhieu

13 tháng 11 2021

\(msinx-mcosx=2\)

Phương trình có nghiệm:

\(\Leftrightarrow m^2+\left(-m\right)^2\ge2^2\)

\(\Leftrightarrow2m^2-4\ge0\Rightarrow\)\(\left[{}\begin{matrix}x\le-\sqrt{2}\\x\ge\sqrt{2}\end{matrix}\right.\)

Phương trình vô nghiệm

\(\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\)

NV
17 tháng 6 2019

Nhận thấy \(x=0\) không phải là nghiệm của BPT đã cho, chia 2 vế cho \(x^2\):

\(\Leftrightarrow\frac{\left(x^2-2x+4\right)}{x}.\frac{\left(x^2+x+4\right)}{x}-a-2018\le0\)

\(\Leftrightarrow\left(x+\frac{4}{x}-2\right)\left(x+\frac{4}{x}+1\right)-a-2018\le0\)

Đặt \(x+\frac{4}{x}=t\) \(\left(\left|t\right|\ge4\right)\) BPT trở thành:

\(\left(t-2\right)\left(t+1\right)-a-2018\le0\)

\(\Leftrightarrow t^2-t-a-2020\le0\)

\(\Leftrightarrow t^2-t-2020\le a\)

Xét \(f\left(t\right)=t^2-t-2020\) với \(\left|t\right|\ge2\)

Để BPT đã cho có nghiệm thì \(a\ge\min\limits_{\left|t\right|\ge2}f\left(t\right)\)

\(f'\left(t\right)=2t-1=0\Rightarrow t=\frac{1}{2}\)

\(f\left(-2\right)=-2014\) ; \(f\left(2\right)=-2018\)

\(\Rightarrow\min\limits_{\left|t\right|\ge2}f\left(t\right)=f\left(2\right)=-2018\)

\(\Rightarrow a\ge-2018\)

Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\) Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên...
Đọc tiếp

Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\) 

Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).

Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).

Câu 4: Giá trị của m để phương trình \(cos2x-\left(2m+1\right)sinx-m-1=0\) có nghiệm trên khoảng \(\left(0;\pi\right)\) là \(m\in[a;b)\) thì a+b là?

Câu 5: Điều kiện cần và đủ để phương trình \(msinx-3cosx=5\) có nghiệm là \(m\in(-\infty;a]\cup[b;+\infty)\) với \(a,b\in Z\). Tính a+b.

Câu 6: Điều kiện để phương trình \(msinx-3cosx=5\) có nghiệm là? 

Câu 7: Số nghiệm để phương trình \(sin2x+\sqrt{3}cos2x=\sqrt{3}\) trên khoảng \(\left(0;\dfrac{\pi}{2}\right)\) là?

Câu 8: Tập giá trị của hàm số \(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) là?

Câu 9: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\) dể phương trình \(\left(m+1\right)sin^2-sin2x+cos2x=0\) có nghiệm?

Câu 10: Có bao nhiêu giá trị nguyên của tham số m để phương trình \(sin2x-cos2x+|sinx+cosx|-\sqrt{2cos^2x+m}-m=0\) có nghiệm thực?

3
1 tháng 8 2021

1.

\(cos2x-3cosx+2=0\)

\(\Leftrightarrow2cos^2x-3cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(x=k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow\) không có nghiệm x thuộc đoạn

\(x=\pm\dfrac{\pi}{3}+k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow x_1=\dfrac{\pi}{3};x_2=\dfrac{5\pi}{3}\)

\(\Rightarrow P=x_1.x_2=\dfrac{5\pi^2}{9}\)

1 tháng 8 2021

2.

\(pt\Leftrightarrow\left(cos3x-m+2\right)\left(2cos3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=\dfrac{1}{2}\left(1\right)\\cos3x=m-2\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\)

Ta có: \(x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\pm\dfrac{\pi}{9}\)

Yêu cầu bài toán thỏa mãn khi \(\left(2\right)\) có nghiệm duy nhất thuộc \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m-2=1\\m-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=3\\m=1\end{matrix}\right.\)

TH1: \(m=2\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\dfrac{\pi}{6}\left(tm\right)\)

\(\Rightarrow m=2\) thỏa mãn yêu cầu bài toán

TH2: \(m=3\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=0\left(tm\right)\)

\(\Rightarrow m=3\) thỏa mãn yêu cầu bài toán

TH3: \(m=1\)

\(\left(2\right)\Leftrightarrow cos3x=-1\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{1}{3}\\x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

Vậy \(m=2;m=3\)

NV
23 tháng 9 2020

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\left(m^2+1\right)\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=m^2+1\)

Do \(-1\le sin\left(x+\frac{\pi}{4}\right)\le1\) nên pt vô nghiệm khi và chỉ khi:

\(\left[{}\begin{matrix}m^2+1< -1\\m^2+1>1\end{matrix}\right.\) \(\Leftrightarrow m\ne0\)

Vậy \(m\ne0\)