Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)
Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)
BPT đã cho vô nghiệm khi:
\(-x^2+x-m\le0\) nghiệm đúng với mọi x
\(\Leftrightarrow\Delta'=1-4m\le0\)
\(\Rightarrow m\ge\dfrac{1}{4}\)
\(x^2-2\left(m-1\right)x+4m+8< 0\)
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(4m+8\right)\)
\(=4m^2-4m+1-16m+32\)
\(=4m^2-20m+33\)
Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4m^2-20m+33< =0\\1>0\left(đúng\right)\end{matrix}\right.\)
=>\(4m^2-20m+33< =0\)
=>\(\left(2m-5\right)^2+8< =0\)(vô lý)
=>\(m\in\varnothing\)
Chọn D
Hệ bất phương trình vô nghiệm khi và chỉ khi m - 1 ≥ 3 hay m ≥ 4
Câu 2 bạn ghi thiếu đề
Câu 1:
\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)
\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)
BPT đã cho vô nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}m< 0\\m< -1\end{matrix}\right.\) \(\Rightarrow\) m<-1.
Vậy với m<-1, yêu cầu bài toán thỏa mãn.
Do \(a=-1< 0\) để BPT đã cho vô nghiệm
\(\Leftrightarrow\Delta'=1-\left(m+1\right)\le0\Rightarrow m\ge0\)