K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

\(-3x^2+5x-4=-\left(3x^2-5x+4\right)=-\left(3x^2-2\cdot\sqrt{3}\cdot\frac{5\sqrt{3}}{6}+\frac{25}{12}+\frac{23}{12}\right)\)

\(=-[\left(\sqrt{3}x-\frac{5\sqrt{3}}{6}\right)^2+\frac{23}{12}]< 0\)

Để bpt >0 thì

\(\left(m-4\right)x^2+\left(1+m\right)x+2m-1< 0\) (1)

\(\Delta=\left(m+1\right)^2-4\cdot\left(m-4\right)\cdot\left(2m-1\right)=-7m^2+38m-15\)

ĐK \(\left\{{}\begin{matrix}\Delta< 0\\a< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< \frac{19-\sqrt{466}}{7}\\m>\frac{19+\sqrt{466}}{7}\end{matrix}\right.\\m< 4\end{matrix}\right.\)

\(\Leftrightarrow m< \frac{19-\sqrt{466}}{7}\)

19 tháng 3 2021

\(-x^2-2\left(m-1\right)x+2m-1>0\)

\(\Leftrightarrow x^2+2\left(m-1\right)x-2m+1< 0\)

\(f\left(x\right)=x^2+2\left(m-1\right)x-2m+1\)

Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)=0\) có hai nghiệm phân biệt thỏa mãn \(x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+2m-1>0\\f\left(1\right)\le0\\f\left(0\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2>0\\1+2\left(m-1\right)-2m+1\le0\\-2m+1\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m\ge\dfrac{1}{2}\)

7 tháng 5 2016

Đặt \(t=3^x,t>0\)

Bất phương trình trở thành :

\(m.t^2+9\left(m-1\right)t+m-1>0\)

\(\Leftrightarrow m\left(t^2+9t+1\right)>9t+1\)

\(\Leftrightarrow m>\frac{9t+1}{t^2+9t+1}\)

Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi :

\(m>max_{t>0}\frac{9t+1}{t^2+9t+1}\)

Xét hàm số \(f\left(t\right)=\frac{9t+1}{t^2+9t+1};t>0\)

Ta có : \(f'\left(t\right)=\frac{-9t-2}{\left(t^2+9t+1\right)^2}< 0,t>0\)

đây là hàm nghịch biến suy ra \(f\left(t\right)< f\left(0\right)=1\)

Do đó : \(\frac{9t+1}{t^2+9t+1}< 0,t>0\) nên các giá trị cần tìm là \(m\ge1\)

11 tháng 5 2021

Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)

\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)

\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)

\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)

Yêu cầu bài toán thỏa mãn khi:

\(m\le minf\left(t\right)=-2\)

11 tháng 5 2021

viết rõ dòng cuối cho em được ko ạ em ko hiểu lắm

2: \(-4x^2+5x-2\)

\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)

\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)

\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)

Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)

Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)

=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)

\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)

\(=16m^2+32m+16+4\left(1-4m^2\right)\)

\(=32m+20\)

Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)

=>32m+20<0

=>32m<-20

=>\(m< -\dfrac{5}{8}\)