Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}+\frac{1}{2.x.y}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{xy+1}{2xy}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy+1}{2xy}\)
\(\Leftrightarrow2x+2y=xy+1\Leftrightarrow2x-xy+2y-1=0\)
\(\Leftrightarrow x\left(2-y\right)-2\left(2-y\right)=-3\Leftrightarrow\left(2-y\right)\left(x-1\right)=-3\)
Vì x, t nguyên nên 2 - y và x - 1 cũng nguyên. Vậy thì chúng phải là ước của -3.
Ta có bảng:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
2-y | 1 | 3 | -3 | -1 |
y | 1 | -2 | 5 | 3 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (-2;1) , (0; -2) , (2 ; 5) , (4 ; 3).
b) Do x, y nguyên nên (x -1)2 và y + 1 đều là ước của -4.
Ta có bảng:
(x-1)2 | 1 | 2 | 4 |
x | 0 hoặc 2 | \(\orbr{\begin{cases}x=\sqrt{2}+1\\x=1-\sqrt{2}\end{cases}}\left(l\right)\) | -1 hoặc 3 |
y + 1 | -4 | -1 | |
y | -3 | -2 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (0; -3) , (2; -3) , (-1; -2) (3 ; -2).
Cặp số nguyên dương (x,y) thỏa mãn
\(\left|\left(x^2+3\right)\left(y+1\right)\right|=16\)
Giúp mik với
a) \(\frac{x}{3}-\frac{1}{y}=\frac{1}{6}\)
Quy đồng \(\frac{x}{3}\)với \(\frac{1}{6}\). Ta có:
\(\frac{x}{3}=\frac{x.6}{3.6}=\frac{x6}{18}\)
\(\frac{1}{6}=\frac{1.3}{6.3}=\frac{3}{18}\)
\(\Rightarrow\frac{x}{3}-\frac{1}{y}=\frac{1}{6}\Leftrightarrow\frac{x6}{18}-\frac{1}{y}=\frac{3}{18}\)
Quy đồng \(\frac{1}{y}\)với \(\frac{3}{18}\). Ta có:
Đặt mẫu số chung: 18. Ta có:
\(\frac{1}{y}=\frac{18}{18}\) ( Vì khi quy đồng mẫu số của (1/y) phải là 18. Nên (1/y) = (1.18)/18 = (18/18) )
Vì y là mẫu. Suy ra y = 18
\(\Rightarrow\frac{x6}{18}-\frac{1}{y}=\frac{3}{18}\Leftrightarrow\frac{x6}{18}-\frac{18}{18}=\frac{3}{18}\)
\(\Leftrightarrow\frac{x6}{18}=\frac{18}{18}+\frac{3}{18}\Leftrightarrow\frac{x6}{18}=\frac{21}{18}\)
\(\Rightarrow x6=21\Rightarrow x=\frac{21}{6}=\frac{7}{2}\) ( và vì x là tử suy ra x = 7)
Vậy .....
b) Ta có: \(\left(3a+11b\right)⋮17\Leftrightarrow\left(5a+17b\right)⋮17\)
\(\Rightarrow\left(a+b\right)⋮17\)
Vì ( a + b) chia hết cho 17
\(\Rightarrow\left(..a+..b\right)⋮17\). Thế số vào chỗ ". . " Ta có:
\(\left(..a+..b\right)=\left(5a+17b\right)⋮17\left(ĐPCM\right)\)
bài này sẽ giải nếu x,y là số nguyên
ĐKXĐ: x≠2
A=\(\dfrac{3\left(x++y\right)\left(x-2\right)+1}{x-2}\)
A=\(\dfrac{3\left(x+y\right)\left(x-2\right)}{x-2}+\dfrac{1}{x-2}\)
A=3(x+y)+\(\dfrac{1}{x-2}\)
Vì x;y; A là số nguyên nên \(\dfrac{1}{x-2}\) cũng là số nguyên
hay x-2⋮1
hay x-2ϵƯ(1)=(-1;1)
suy ra x=1;3
tự tìm y