Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hiêu hai cp=5 chỉ có 4 &9
=>y=+-2; x-2016=+-3=>x=2019 hoac x=2013
Coi phương trình trên là pt bậc 2 ẩn x tham số y
Ta có : \(\Delta=\left(y-1\right)^2-4\left(y+3\right)\)
\(=y^2-2y+1-4y-12\)
\(=y^2-6y-11\)
Pt có nghiệm khi \(\Delta=y^2-6y-11\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}y\le3-2\sqrt{5}\\y\ge3+2\sqrt{5}\end{cases}}\)
Để pt ban đầu có nghiệm nguyên thì \(\Delta\)phải là số chính phương
Đặt \(\Delta=k^2\left(k\inℕ\right)\)
\(\Leftrightarrow y^2-6y-11=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-20=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-k^2=20\)
\(\Leftrightarrow\left(y-3-k\right)\left(y-3+k\right)=20\)
Vì y là số nguyên , k là số tự nhiên nên y - 3 - k < y - 3 + k và 2 số này đều nguyên
Lập bảng ước của 20 ra tìm đc y -> thế vào pt ban đầu -> tìm đc x (Nếu x;y mà ko nguyên thì loại)
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)
\(\Rightarrow2^{x+1}.3^y=4^x.3^x\Rightarrow2^{x+1}.3^y=2^{2x}.3^x\)
=> x + 1 = 2x và y = x
=> 2x - x = 1 và y = x
=> x = 1 và x = y = 1
2x+1.3y=12y
2x+1.3y=4x.3x
2x+1.3y=22x.3x
\(\frac{2^{2x}}{2^{x+1}}\)=\(\frac{3^y}{3^x}\)
2x-1=3y-x
Vì ƯCLN (ước chung lớn nhất) của 2,3 là 1 =>x+1=y-x=0=>x=1,y=1
\(2^x=4^{y-1};27^y=3^{x+8}\)
=> \(2^x=2^{2\left(y-1\right)};3^{3y}=3^{x+8}\)
=> \(x=2\left(y-1\right);3y=x+8\)
Thay x = 2(y-1) vào phương trình 3y=x+8 ta có:
3y = 2(y-1) + 8
3y = 2y - 2 +8
3y - 2y = 6
y=6
=> x = 2(y-1) = 2(6-1) = 10
Kết luận: x = 10; y=6
CÁC BẠN ƠI GIẢI CHO MÌNH CÂU NÀY VỚI :
TÌM 2 SỐ TỰ NHIÊN X, Y THỎA MÃN :
X( 2Y - 1 ) = 5 - Y
x+1+2y-1=12
2y+x=12
Vì 2y là số chẵn nên x cũng là số chẵn
Suy ra:2y=[0,2,4,6,8,10]
Do đó ta lập bảng sau:
Vậy cặp (x;y) TM là:(12;0)(11;1)(10;2)(9;3)(8;4)(7;5)
ngáo đá