K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(2x-y+7)^2022>=0 với mọi x,y

|x-3|^2023>=0 với mọi x,y

Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y

mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)

=>2x-y+7=0 và x-3=0

=>x=3 và y=2x+7=2*3+7=13

3 tháng 3 2019

\(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}\le0\)

Vì \(\left(2x-y+7\right)^{2012}\ge0\forall x;y\)và \(\left|x-3\right|\ge0\Leftrightarrow\left|x-3\right|^{2013}\ge0\forall x\)

\(\Rightarrow\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)

Dấy "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+7=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=3\end{cases}}}\)

Vậy....

19 tháng 1 2018

Ta có: \(\hept{\begin{cases}\left(5x-y\right)^{2016}\ge0\\\left|x^2-4\right|^{2017}\ge0\end{cases}\Rightarrow\left(5x-y\right)^{2016}+\left|x^2-4\right|\ge}0\)

Mà \(\left(5x-y\right)^{2016}+\left|x^2-4\right|^{2017}\le0\)

\(\Rightarrow\hept{\begin{cases}\left(5x-y\right)^{2016}=0\\\left|x^2-4\right|^{2017}=0\end{cases}\Rightarrow\hept{\begin{cases}5x-y=0\\x^2-4=0\end{cases}}\Rightarrow\hept{\begin{cases}y=\pm10\\x=\pm2\end{cases}}}\)

Vậy các cặp (x;y) là (2;10);(-2;-10)

19 tháng 1 2018

cảm ơn

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Lời giải:

Ta thấy:

\((2x-y+7)^{2012}=[(2x-y+7)^{1006}]^2\geq 0, \forall x,y\in\mathbb{R}\)

\(|x-3|^{2013}\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow (2x-y+7)^{2012}+|x-3|^{2013}\geq 0, \forall x,y\)

Do đó để thỏa mãn điều kiện đề bài thì:

\((2x-y+7)^{2012}+|x-3|^{2013}=0\)

\(\Leftrightarrow \left\{\begin{matrix} (2x-y+7)^{2012}=0\\ |x-3|^{2013}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-y+7=0\\ x=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=3\\ y=13\end{matrix}\right.\)

NV
3 tháng 3 2019

\(\left\{{}\begin{matrix}\left(2x-y+7\right)^{2012}\ge0\\\left|x-3\right|^{2013}\ge0\end{matrix}\right.\) \(\Rightarrow\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}\ge0\)

Vậy \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}\le0\Leftrightarrow\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}6-y+7=0\\x=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=13\end{matrix}\right.\)

22 tháng 10 2015

Ta thấy:\(\left(x-3\right)^{2012}=\left(\left(x-3\right)^{1006}\right)^2\ge0\)

\(\left(3y-12\right)^{2014}=\left(\left(3y-12\right)^{1007}\right)^2\ge0\)

=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\)

mà \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\le0\)

=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}=0\)

=>\(\left(x-3\right)^{2012}=0=>x-3=0=>x=3\)

\(\left(3y-12\right)^{2014}=0=>3y-12=0=>3y=12=>y=4\)

Vậy x=3,y=4

10 tháng 3 2017

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có

\(a^3+b^2+2015|a+b|=2017\)

+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

mình chưa học