Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:
\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)
\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)
Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)
\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)
Suy ra \(b^2+1\inƯ\left(10\right)=....\)
Tự làm nốt nhá, trở thành bài lớp 6 r` :)
\(x^2-\left(2007+y\right)x+3+y=0\)
\(\Leftrightarrow x^2-2007x-xy+3+y=0\)
\(\Leftrightarrow x^2-x-2006x+2006-xy+y=2003\)
\(\Leftrightarrow x\left(x-1\right)-2006\left(x-1\right)-y\left(x-1\right)=2003\)
\(\Leftrightarrow\left(x-1\right)\left(x-2006-y\right)=2003\)
Do x;y là số nguyên nên x-1 là ước của 2003, 2003 là số nguyên tố nên ta có \(x-1=\left\{-2003;-1;1;2003\right\}\)
\(\Rightarrow x=\left\{-2002;0;2;2004\right\}\)
Với x=-2002 thì -2002-2006-y=-1 => y=-4007
Với x=0 thì 0-2006-y=-2003 => y=-3
Với x=2 thì 2-2006-y=2003 => y=-4007
Với x=2004 thì 2004-2006-y=1 => y=-3
Vậy các cặp số nguyên (x;y) cần tìm là (-2002;-4007);(-2;-4007);(0;-3);(2004;-3)
\(x^5+y^2=xy^2+1\)
\(\Rightarrow x^5+y^2-xy^2-1=0\)
\(\Leftrightarrow\left(x^5-1\right)-\left(xy^2-y^2\right)=0\)
\(\Leftrightarrow\text{ }\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)-y^2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1-y^2\right)=0\)
Hình như bạn ghi sai đề rồi
Mình sẽ làm bài của đề đúng
\(x^2+xy-2015x-2016y-2017=0\Leftrightarrow x^2+xy+x-2016x-2016y-2016=1\Leftrightarrow x\left(x+y+1\right)-2016\left(x+y+1\right)=1\Leftrightarrow\left(x+y+1\right)\left(x-2016\right)=1\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y+1=1\\x-2016=1\end{matrix}\right.\\\left\{{}\begin{matrix}x+y+1=-1\\x-2016=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2017\\y=-2017\end{matrix}\right.\\\left\{{}\begin{matrix}x=2015\\y=-2017\end{matrix}\right.\end{matrix}\right.\)
Vậy (x;y)={(2017;-2017);(2015;-2017)}