K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

phải (-3)^y chứ

14 tháng 8 2018

Ta có: \(2^{x+1}.\left(-3\right)^y=12^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=\left(3.4\right)^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.4^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.2^{2x}\)

\(\Rightarrow2^{x+1}.\left(-1\right)^y.3^y=3^x.2^{2x}\)

\(\Rightarrow\left[{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=y=1\end{matrix}\right.\)

Vậy x=1 , y=1

10 tháng 1 2019

Đáp án C

8 tháng 1 2019

Chọn B

7 tháng 4 2016

3/x+y/3=5/6

<=>3/x=5/6-y/3

<=>3/x=5/6-2y/6=(5-2y)/6

<=>x.(5-2y)=3.6=18

sau đó lập bảng , tìm x,y

1 tháng 5 2019

Chọn C.

Phương pháp: Đưa bài toán về tìm m để hệ có nghiệm duy nhất.

17 tháng 11 2019

2 tháng 6 2017

log x 2 + y 2 + 2 4 x + 4 y - 4 ≥ 1

⇔ 4 x + 4 y - 4 ≥ x 2 + y 2 + 2 ⇔ x - 2 2 + y - 2 2 ≤ 2

Đây là tập hợp tất cả các điểm nằm trên và trong đường tròn tâm I(2;2) bán kính ℝ ' = m .

Ta có I I ' = 10 . m nhỏ nhất để tồn tại duy nhất cặp (x;y) sao cho x 2 + y 2 + 2 x - 2 y + 2 - m = 0  thì hai đường tròn nói trên tiếp xúc ngoài

⇒ R + R ' = I I ' ⇔ m + 2 = 10 ⇔ m = 10 - 2 2

Đáp án cần chọn là B

16 tháng 7 2019

Đáp án A

14 tháng 4 2016

|x-2|.y+|x-2|-17=0

<=>|x-2|.y+|x-2|=17

<=>|x-2|.(y+1)=17=1.17=17.1=(-1).(-17)=(-17).(-1)

Ta có: |x-2| và y+1 là ước của 17

Chú ý rằng |x-2| >= 0 với mọi x nên |x-2| là ước dương của 17,từ đó suy ra y+1 cũng là ước dương của 17

=>|x-2|.(y+1)=1.17=17.1

+)|x-2|=1 và y+1=17

=>x-2=-1 hoặc x-2=1 và y+1=17

=>x=1 hoặc x=3 và y=16

+)|x-2|=17 và y+1=1

=>x-2=-17 hoặc x-2=17 và y+1=1

=>x=-15 hoặc x=19 và y=0

Vậy ..........................

 

9 tháng 3 2016

Ta có:1/(x+y)=1/x+1/y

<=>1/(x+y)=(x+y)/xy

<=>(x+y)(x+y)=xy

<=>(x+y)2=xy

Mà (x+y)>= 0 với mọi x;y(*)

 xy<0( do x;y trái dấu).Mâu thuẫn với (*)

 Vậy không tồn tại cặp (x;y) nào thoả mãn đề bài

9 tháng 3 2016

Ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)

\(=>\frac{1}{x+y}=\frac{x+y}{xy}\Rightarrow\left(x+y\right)^2=xy\)

nếu x; y trái dấu thì xy<0 mà \(\left(x+y\right)^2\ge0\)

Nên \(\left(x+y\right)^2\ne xy\) khi x;y trái dấu

Vậy không có các cặp (x;y) trái dấu thỏa mãn