Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(D=4x^4+y^4\)
\(=\left(4x^4+4x^2y^2+y^4\right)-\left(2xy\right)^2\)
\(=\left(2x^2+y^2\right)-\left(2xy\right)^2\)
\(=\left(2x^2+y^2+2xy\right)\left(2x^2+y^2-2xy\right)\)
Do x,y nguyên dương nên \(2x^2+y^2+2xy>1\)
Do đó để D là số nguyên tố \(\Leftrightarrow\hept{\begin{cases}2x^2+y^2+2xy=1\\2x^2+y^2-2xy=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Thử lại ta có \(D=1\) không là số nguyên tố
Do đó, không có cặp số nguyên dương x.y thỏa mãn đề.
\(8x^3+y^3-6xy+1=\left(2x+y\right)^3\)\(-6xy\left(2x+y\right)-6xy+1\)
\(\Leftrightarrow\left(2x+y+1\right)\)\(\left[\left(2x+y\right)^2-\left(2x+y\right)+1-6xy\right]\)
\(\Leftrightarrow\left(2x+y+1\right)\)\(\left(4x^2+y^2-2x-y-2xy+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2x+y+1=1\\4x^2+y^2-2x-y-2xy+1=1\end{cases}}\)
Xét nốt các trường hợp là xong
Xét TH2 thế nào vậy bạn. Mình cũng đang cần nhưng không biết làm
Viết pt trên thành pt bậc 2 đối với x:
\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)
(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)
\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)
Ta cần có \(\Delta\) là số chính phương.Tức là:
\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)
\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)
Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-
\(D=4x^4+4x^2y^2+y^4-4x^2y^2=\left(2x^2+y^2\right)^2-4x^2y^2=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)Để D ng/tố thì \(\left[{}\begin{matrix}2x^2+y^2-2xy=1\\2x^2+y^2+2xy=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+\left(x+y\right)^2=1\\x^2+\left(x-y\right)^2=1\end{matrix}\right.\) Vì x nguyên dương nên x=0 hoặc x=1. Từ đó có y=1
Bạn ơi, bạn chưa thử lại nhé. Nếu thay x,y vào thì D=1 không là số nguyên tố đâu nên là đáp án phải là không có cặp số nguyên x,y nào thỏa mãn chứ.