Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát, giả sử \(a\ge b\ge c\Rightarrow ab+bc+ca\le ab+ab+ab=3ab\)
\(\Rightarrow abc< 3ab\Rightarrow c< 3\Rightarrow c=2\)
\(\Rightarrow2ab< ab+2\left(a+b\right)\Rightarrow ab< 2\left(a+b\right)\)
\(\Rightarrow ab-2b-2b+4< 4\Rightarrow\left(a-2\right)\left(b-2\right)< 4\)
\(\Rightarrow\left(a-2\right)\left(b-2\right)=\left\{1;2;3\right\}\)
- Với \(\left(a-2\right)\left(b-2\right)=1\Rightarrow a=b=3\)
- Với \(\left(a-2\right)\left(b-2\right)=2\Rightarrow\left[{}\begin{matrix}a=4;b=3\\a=3;b=4\end{matrix}\right.\) (loại)
- Với \(\left(a-2\right)\left(b-2\right)=3\Rightarrow\left[{}\begin{matrix}a=5;b=3\\a=3;b=5\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(2;3;5\right)\) và các hoán vị của chúng
5;7;11
7;11;13
.................................. v.v.v vo so
a: Trường hợp 1: p=2
=>p+11=13(nhận)
Trường hợp 2: p=2k+1
=>p+11=2k+12(loại)
b: Trường hợp 1: p=3
=>p+8=11 và p+10=13(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+10=3k+12(loại)
Để p + 11 là số nguyên tố thì p là số chẵn (nếu p là số lẻ thì p + 11 là số chẵn \(\Rightarrow p+11⋮2\) mà chia hết cho một số thì không phải là số nguyên tố)
Trong tập hợp các số nguyên tố chỉ có 2 là số chẵn. Vậy p = 2
b) Để p + 8, p + 10 là số nguyên tố thì p là số lẻ (nếu p là số chẵn thì \(p+8⋮2,p+10⋮2\) mà chia hết cho một số thì không phải là số nguyên tố
Nếu p = 3, p + 8 = 3 + 8 = 11 là số NT; p + 10 = 3 + 10 = 13 là số NT (chọn)
Nếu \(p=3k\left(k\in N|k>1\right)\)thì p là hợp số (loại)
Nếu \(p=3k+1\left(k\in N\right)\Rightarrow p+8=3k+1+8=3k+9⋮3\) (loại)
Nếu \(p=3k+2\left(k\in N\right)\Rightarrow p+10=3k+2+10=3k+9⋮3\)
(loại)
Vậy p=3
abc < ab+bc+ac
<=> 1/a+1/b+1/c > 1 (*)
giả sử a > b >c => 1/a < 1/b <1/c
1 < 1/a +1/b +1/c < 1/c + 1/c + 1/c = 3/c => c < 3 => c = 2
thay c = 2 vào (*) được:
1/2 < 1/a + 1/b < 1/b + 1/b = 2/b => 2 < b < 4 => b = 3
thay b = 3; c = 2 vào (*) được:
1/a > 1 - 1/2 - 1/3 = 1/6 => 3 < a < 6 => a = 5
vậy (a;b;c) = (2;3;5)
cho mình 1 đ-ú-n-g nha
abc < ab+bc+ac
<=> 1/a+1/b+1/c > 1 (*)
giả sử a > b >c => 1/a < 1/b <1/c
1 < 1/a +1/b +1/c < 1/c + 1/c + 1/c = 3/c => c < 3 => c = 2
thay c = 2 vào (*) được:
1/2 < 1/a + 1/b < 1/b + 1/b = 2/b => 2 < b < 4 => b = 3
thay b = 3; c = 2 vào (*) được:
1/a > 1 - 1/2 - 1/3 = 1/6 => 3 < a < 6 => a = 5
vậy (a;b;c) = (2;3;5)
p chỉ có thể là 1 mà 1 ko phải số nguyên tố=> ko có giá trị p thỏa mãn