Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(D=(0;+\infty)\backslash\left\{1\right\}\)
b) \(D=[2;+\infty)\)
a/ ĐKXĐ: \(\left\{{}\begin{matrix}2x+1\ge0\\3\left|x\right|^2+5\left|x\right|-2\ne0\\x-\left|x\right|\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{2}\\\left|x\right|\ne\frac{1}{3}\\x< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\frac{1}{2}\le x< 0\\x\ne-\frac{1}{3}\end{matrix}\right.\)
b/ Nếu \(x\in D\Rightarrow-x\in D\)
\(f\left(-x\right)=\frac{\left|-2017x-10\right|-\left|-2017x+10\right|}{x^6-8x^4+16x^2}\)
\(=\frac{\left|2017x+10\right|-\left|2017x-10\right|}{x^6-8x^4+16x^2}=-\frac{\left|2017x-10\right|-\left|2017x+10\right|}{x^6-8x^4+16x^2}=-f\left(x\right)\)
Hàm lẻ
ĐKXĐ:
a/ \(\left\{{}\begin{matrix}x^2+2x-8\ne0\\x^2+2x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne-4\\x\ne2\\x\ne1\\x\ne-3\end{matrix}\right.\)
b/ \(x^2-2x+3\ge0\Rightarrow x\in R\)
\(\left\{{}\begin{matrix}\sqrt{x^2+2x-3}-\left|x-1\right|\ne0\\x^2+2x-3\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-3\ne\left(x-1\right)^2\\\left(x-1\right)\left(x+3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-4\ne0\\x\ge1;x\le-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge1;x\le-3\end{matrix}\right.\Leftrightarrow x>1;x\le-3\)
TXĐ \(D=\left(1;+\infty\right)\cap(-\infty;-3]\)