\(y=\sqrt[3]{1-x}\)

b.\(y=\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

a. \(y=\sqrt[3]{1-x}\) có tập xác định \(x\in R\)

 

b. \(y=\log_3\left(x^2-3x\right)\)

Điều kiện : \(x^2-3x>0\Leftrightarrow\left[\begin{array}{nghiempt}x< 0\\x>0\end{array}\right.\)

                                   \(\Leftrightarrow\) TXĐ \(D=\left(-\infty;0\right)\cup\left(3;+\infty\right)\)

 

c. \(y=\log_{x^2-4x+4}2013\)

Điều kiện : \(\begin{cases}x^2-4x+4>0\\x^2-4x+4\ne1\end{cases}\)\(\Leftrightarrow\begin{cases}\left(x-2\right)^2>0\\x^2-4x+3>0\end{cases}\)

                                              \(\Leftrightarrow\begin{cases}x\ne2\\x\ne1\\x\ne3\end{cases}\)

Vậy tập xác định là \(D=R\backslash\left\{1;2;3\right\}\)

14 tháng 5 2016

a. \(y=\left(3^x-9\right)^{-2}\)

Điều kiện : \(3^x-9\ne0\Leftrightarrow3^x\ne3^2\)

                                  \(\Leftrightarrow x\ne2\)

Vậy tập xác định là \(D=R\backslash\left\{2\right\}\)

 

b. \(y=\sqrt{\log_{\frac{1}{3}}\left(x-3\right)-1}\)

Điều kiện : \(\log_{\frac{1}{3}}\left(x-3\right)-1\ge0\Leftrightarrow\log_{\frac{1}{3}}\left(x-3\right)\ge1=\log_{\frac{1}{3}}\frac{1}{3}\)

                                               \(\Leftrightarrow0< x-3\le\frac{1}{3}\)

                                               \(\Leftrightarrow3< x\le\frac{10}{3}\)

Vậy tập xác định \(D=\) (3;\(\frac{10}{3}\)]

 

c. \(y=\sqrt{\log_3\sqrt{x^2-3x+2}+4-x}\)

Điều kiện :

                 \(\log_3\sqrt{x^2-3x+2}+4-x\ge0\Leftrightarrow x^2-3x+2+4-x\ge1\)

                                                                 \(\Leftrightarrow\sqrt{x^2-3x+2}\ge-x-3\)

\(\Leftrightarrow\begin{cases}x-3< 0\\x^2-3x+2\ge0\end{cases}\) hoặc \(\begin{cases}x-3\ge0\\x^2-3x+2\ge\left(x-3\right)^2\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\2\le x< 3\\x\ge3\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\x\ge2\end{array}\right.\)

Vậy tập xác định là : D=(\(-\infty;1\)]\(\cup\) [2;\(+\infty\) )

26 tháng 3 2016

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

28 tháng 8 2021

hacker

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

4 tháng 5 2016

Điều kiện xác định \(\begin{cases}x< 3x+2\ne1\\1-\sqrt{1-4x}>0\\1-4x\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x>-\frac{2}{3},x\ne-\frac{1}{3}\\1>1-4x\\x\le\frac{1}{4}\end{cases}\)

                                                          \(\Leftrightarrow\begin{cases}x>-\frac{2}{3};x\ne-\frac{1}{3}\\x>0\\x\le\frac{1}{4}\end{cases}\)

                                                          \(\Leftrightarrow0< x\le\frac{1}{4}\)

Vậy tập xác định : \(D=\)(0;\(\frac{1}{4}\)]

27 tháng 4 2017

Hỏi đáp Toán

23 tháng 5 2017

a) Đồ thị của hàm số \(y=\log_3\left(x-1\right)\) nhận được từ đồ thị của hàm số \(y=\log_3x\) bằng cách tịnh tiến song song với trục hoành sang bên phải 1 đơn vị

b) Đồ thị của hàm số \(y=\log_{\dfrac{1}{3}}\left(x+1\right)\) nhận được từ đồ thị của hàm số \(y=\log_{\dfrac{1}{3}}x\) bằng cách tịnh tiến song song với trục hoành sang bên trái 1 đơn vị

c) Đồ thị của hàm số \(y=1+\log_3x\) nhận được từ đồ thị của hàm số \(y=\log_3x\) bằng cách tịnh tiến song song với trục tung lên trên 1 đơn vị

14 tháng 5 2016

\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)

Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)

             \(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\)  \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)

              \(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)

              \(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số