K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 11 2021

\(y=\dfrac{sinx+1}{sinx}\)

ĐKXĐ: \(sinx\ne0\Rightarrow x\ne k\pi\)

\(y=\dfrac{sin2x+cosx}{tanx-sinx}\)

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\left(\dfrac{1}{cosx}-1\right)\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\)

\(\Rightarrow sin2x\ne0\)

\(\Rightarrow x\ne\dfrac{k\pi}{2}\)

NV
6 tháng 6 2021

1.

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

2.

ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

3. 

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

6 tháng 6 2021

cho hỏi cái này tí nha    \(sin\alpha\)=1/2  và \(cos\alpha\)=\(\dfrac{-\sqrt{3}}{2}\)

thì góc đó là \(\alpha=?\pi\)

25 tháng 11 2023

a: ĐKXĐ: \(cosx-1\ne0\)

=>\(cosx\ne1\)

=>\(x\ne k2\Omega\)

b: ĐKXĐ: sin x-1>=0

=>sin x>=1

mà \(-1< =sinx< =1\)

nên sin x=1

=>\(x=\dfrac{\Omega}{2}+k2\Omega\)

c:

-1<=sin x<=1

=>-1+1<=sin x+1<=1+1

=>0<=sin x+1<=2

ĐKXĐ: \(\dfrac{1+sinx}{1-cosx}>=0\)

mà \(1+sinx>=0\)(cmt)

nên \(1-cosx>0\)

=>\(cosx< 1\)

mà -1<=cosx<=1

nên \(cosx\ne1\)

=>\(x\ne k2\Omega\)

23 tháng 6 2016

\(x\ne2k\pi;\left(k\in Z\right)\)

6 tháng 9 2018

a) để hàm số : \(y=\dfrac{1-cosx}{sin2x}\) có nghĩa \(\Leftrightarrow sin2x\ne0\Leftrightarrow2x\ne k\pi\)

\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\left(k\in Z\right)\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{k\pi}{2}\backslash k\in Z\right\}\)

b) để hàm số : \(y=\dfrac{tanx}{cosx+1}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k2\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi;\pi+k2\pi\backslash k\in Z\right\}\)

b) để hàm số : \(y=\dfrac{1}{sinx}+\dfrac{1}{cosx}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{k\pi;\dfrac{\pi}{2}+k\pi\backslash k\in Z\right\}\)

b) để hàm số : \(y=\sqrt{\dfrac{1}{1-sinx}}\) có nghĩa \(\Leftrightarrow1-sinx>0\)

ta có : \(sinx\le1\forall x\Rightarrow1-sinx\ge0\forall x\) \(\Rightarrow\) hàm số xác định khi \(1-sinx\ne0\) là đủ

\(\Leftrightarrow sinx\ne1\Leftrightarrow x\ne\dfrac{\pi}{2}+k2\pi\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\)

19 tháng 9 2017

hộ vs ae ơi

1: ĐKXĐ: 3-cosx>0

=>cosx<3(luôn đúng)

2: ĐKXĐ: 1-sin 3x>=0

=>sin 3x<=1(luôn đúng)

3: ĐKXĐ: sin x<>0 và 2x<>pi/2+kpi

=>x<>kpi và x<>pi/4+kpi/2

4: ĐKXĐ: 2x-1>=0

=>x>=1/2