K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

a) Vì -1 ≤ sinx ≤ 1 nên 3 - sinx > 0 với mọi x nên tập xác định của hàm số là D = R.

b) y = (1 - cosx)/sinx xác định khi và chỉ khi sinx ≠ 0

⇔ x ≠ kπ, k ∈ Z.

Vậy tập xác định D = R\{kπ|k ∈ Z}

c) Vì 1 - sinx ≥ 0 và 1 + cosx ≥ 0 nên hàm số xác định khi và chỉ khi

cosx ≠ -1 ⇔ x ≠ π + k2π, k ∈ Z.

 

Vậy tập xác định D = R\{π + k2π|k ∈ Z}

Giải Toán 11 nâng cao | Giải bài tập Toán lớp 11 nâng cao

 
3 tháng 12 2021

a, \(D=R\)

15 tháng 11 2021

Ta có: (x3 +

)8=Ck8 x3(8 – k) ()k =Ck8 x24 – 4k

Trong tổng này, số hạng Ck8 x24 – 4k không chứa x khi và chỉ khi

12 tháng 11 2021

không cop mạng nhé, cop mạng = báo cáo

23 tháng 6 2016

hgHàm số lượng giácghgfh

23 tháng 12 2016

cảm ơn bạn nhiều lắm!

23 tháng 6 2016

bài này dễ thôi bạn

thay x= x+ k6pi vào hàm số y=f(x)= sin\(\frac{x}{3}\) ta dc

 sin\(\frac{x+k6pi}{3}\) =sin\(\frac{x}{3}+k2pi\) ( vì k2pi  "số chẵn lần của π" nên có thể bỏ được)

suy ra sin\(\frac{x}{3}\) =sin\(\frac{x}{3}\) =f(x)  ( dpcm)

26 tháng 8 2016

\(e.y=2sin^2x-cos2x=1-cos2x-cos2x=1-2cos2x\)

Vì \(-1\le cos2x\le1\Leftrightarrow-2\le-2cos2x\le2\Leftrightarrow-1\le1-2cos2x\le3\)

Vậy \(y_{max}=3khicos2x=-1\Leftrightarrow x=\frac{\pi}{2}+k\pi\) \(y_{min}=-1khicos2x=-1\Leftrightarrow cos2x=1\Leftrightarrow x=k\pi\)

27 tháng 8 2016

cảm ơn bạn 

12 tháng 10 2017

Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

12 tháng 10 2017

Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

5 tháng 8 2016

k nhìn thấy

NV
10 tháng 10 2019

ĐKXĐ: \(-2\le x\le3\)

Đặt \(\sqrt{x+2}+2\sqrt{3-x}=a\Rightarrow4\sqrt{6+x-x^2}-3x=a^2-14\)

Mặt khác \(a^2=\left(\sqrt{x+2}+2\sqrt{3-x}\right)^2\le5\left(x+2+3-x\right)=25\)

\(\Rightarrow a\le5\)

\(\sqrt{x+2}+\sqrt{3-x}+\sqrt{3-x}\ge\sqrt{5}+\sqrt{3-x}\ge\sqrt{5}\) \(\Rightarrow a\ge\sqrt{5}\)

\(\Rightarrow\sqrt{5}\le a\le5\)

Phương trình trở thành:

\(a^2-14=ma\Leftrightarrow\frac{a^2-14}{a}=m\) với \(a\in\left[\sqrt{5};5\right]\)

\(f\left(a\right)=\frac{a^2-14}{a}\Rightarrow f'\left(a\right)=\frac{2a^2-a^2+14}{a^2}=\frac{a^2+14}{a^2}>0\)

\(\Rightarrow f\left(a\right)\) đồng biến \(\Rightarrow f\left(\sqrt{5}\right)\le f\left(a\right)\le5\)

\(\Rightarrow-\frac{9\sqrt{5}}{5}\le f\left(a\right)\le\frac{11}{5}\Rightarrow-\frac{9\sqrt{5}}{5}\le m\le\frac{11}{5}\)