Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)
Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)
\(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\) \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)
\(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số
a. \(y=\left(3^x-9\right)^{-2}\)
Điều kiện : \(3^x-9\ne0\Leftrightarrow3^x\ne3^2\)
\(\Leftrightarrow x\ne2\)
Vậy tập xác định là \(D=R\backslash\left\{2\right\}\)
b. \(y=\sqrt{\log_{\frac{1}{3}}\left(x-3\right)-1}\)
Điều kiện : \(\log_{\frac{1}{3}}\left(x-3\right)-1\ge0\Leftrightarrow\log_{\frac{1}{3}}\left(x-3\right)\ge1=\log_{\frac{1}{3}}\frac{1}{3}\)
\(\Leftrightarrow0< x-3\le\frac{1}{3}\)
\(\Leftrightarrow3< x\le\frac{10}{3}\)
Vậy tập xác định \(D=\) (3;\(\frac{10}{3}\)]
c. \(y=\sqrt{\log_3\sqrt{x^2-3x+2}+4-x}\)
Điều kiện :
\(\log_3\sqrt{x^2-3x+2}+4-x\ge0\Leftrightarrow x^2-3x+2+4-x\ge1\)
\(\Leftrightarrow\sqrt{x^2-3x+2}\ge-x-3\)
\(\Leftrightarrow\begin{cases}x-3< 0\\x^2-3x+2\ge0\end{cases}\) hoặc \(\begin{cases}x-3\ge0\\x^2-3x+2\ge\left(x-3\right)^2\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\2\le x< 3\\x\ge3\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\x\ge2\end{array}\right.\)
Vậy tập xác định là : D=(\(-\infty;1\)]\(\cup\) [2;\(+\infty\) )
Điều kiện :
\(\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\ge0\)
\(\Leftrightarrow0< \log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\le1\)
\(\Leftrightarrow\log_51< \log_5\frac{x^2+1}{x+3}\le\log_55\)
\(\Leftrightarrow1< \frac{x^2+1}{x+3}\le5\)\(\Leftrightarrow\begin{cases}\frac{x^2-x-2}{x+3}>0\\\frac{x^2-5x-14}{x+3}\le0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-3< x< -1\\x>2\end{array}\right.\) và \(\left[\begin{array}{nghiempt}x< -3\\-2\le x\le7\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\2< x\le7\end{array}\right.\)
Vậy tập xác định là D = [-2;-1) U (2;7]
Điều kiện xác định :
\(\begin{cases}x\ne\pm1\\\frac{1}{1-x}+\frac{1}{1+x}>0\\\log_2\left(\frac{1}{1-x}+\frac{1}{1+x}\right)\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ne\pm1\\\frac{2x}{1-x^2}>0\\\frac{2x}{1-x^2}\ge1\end{cases}\) \(\Leftrightarrow\begin{cases}x\ne\pm1\\\frac{x^2+2x-1}{1-x^2}\ge0\end{cases}\)
Xét dấu đa thức \(P\left(x\right)=\frac{x^2+2x-1}{1-x^2}\) ta có :
x P(x) - 8 -1- căn 2 -1 -1 + căn 2 1 + 8 - + - + - 0 0
Vậy tập xác định của hàm số là : \(D=\)[ \(-1-\sqrt{2;-1}\) ) \(\cup\) (\(-1+\sqrt{2},1\) ]
a) Tập xác định của hàm số là :
\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)
b) Tập xác định của hàm số là :
\(D=\left(1;+\infty\right)\)
c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)
Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
d) Hàm số xác định khi và chỉ khi
\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)
Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)
Điều kiện \(\begin{cases}\sqrt{x^2+1}-2>0\\3x-2\ge0\\x^2-1>0\end{cases}\) \(\Leftrightarrow x\ge\sqrt{3}\)
Vậy tập xác định là : \(D=\)[\(\sqrt{3;}+\infty\) )
Điều kiện xác định của hàm số là : \(\sin x+\cos x\ne0\Leftrightarrow\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\ne0\)
\(x+\frac{\pi}{4}\ne k\pi\Leftrightarrow x\ne-\frac{\pi}{4}+k\pi\)
Suy ra tập xác định là : \(D=R\backslash\left\{-\frac{\pi}{4}+k\pi\right\}\)
\(x^3+x>0\Leftrightarrow x>0\)
Vậy tập xác định \(D=\left(0;+\infty\right)\)