K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,4^x-2^{x+1}\ge0\\ \Leftrightarrow2^{x+1}\le2^{2x}\\ \Leftrightarrow x+1\le2x\\ \Leftrightarrow x\ge1\)

Tập xác định của hàm số là D = \([1;+\infty)\)

\(b,\left\{{}\begin{matrix}x>0\\1-ln\left(x\right)>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x>0\\ln\left(x\right)< 1\end{matrix}\right.\\ \Leftrightarrow0< x< e\)

Tập xác định của hàm số là \(\left(0;e\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

a, \(y=log\left|x+3\right|\) có nghĩa khi \(\left|x+3\right|>0\)

Mà \(\left|x+3\right|\ge0\forall x\in R\)

\(\Rightarrow\) \(\left|x+3\right|>0\) khi \(x\ne-3\)

Vậy tập xác định của hàm số là D = R \ {-3}.

b, \(y=ln\left(4-x^2\right)\) có nghĩa khi \(4-x^2>0\)

\(\Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\)

Vậy tập xác định của hàm số là D = (-2;2).

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

a, Điều kiện: \(2^x\ne3\Rightarrow x\ne log_23\)

Vậy D = R \ \(log_23\)

b, Điều kiện: \(25-5^x\ge0\Rightarrow5^x\le5^2\Rightarrow x\le2\)

Vậy D = \((-\infty;2]\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

c, Điều kiện: \(\left\{{}\begin{matrix}x>0\\lnx\ne1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\ne e\end{matrix}\right.\)

Vậy D = \(\left(0;+\infty\right)\backslash\left\{e\right\}\)

d, Điều kiện: \(\left\{{}\begin{matrix}x>0\\1-log_3x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\log_3x\le1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\le3\end{matrix}\right.\Rightarrow0< x\le3\)

Vậy D = \((0;3]\)

Chọn D. Bởi vì hàm số ln x luôn luôn dương nên chắc chắn sẽ đồng biến trên TXĐ của nó

a: Nếu a là số nguyên dương thì TXĐ là D=R

Nếu a là số không phải nguyên dương thì TXĐ là D=R\{0}

Nếu a không là số nguyên thì TXĐ: D=R

b: \(y'=\left(x^a\right)'=\left(e^{a\cdot lnx}\right)'\)

\(=\dfrac{a}{x}\cdot e^{a\cdot lnx}=\dfrac{a}{x}\cdot x^a=a\cdot x^{a-1}\)

a: \(y'=4\cdot3x^2-3\cdot2x+2=12x^2-6x+2\)

b: \(y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}=\dfrac{x-1-x-1}{\left(x-1\right)^2}=\dfrac{-2}{\left(x-1\right)^2}\)

c: \(y'=-2\cdot\left(\sqrt{x}\cdot x\right)'\)

\(=-2\cdot\left(\dfrac{x+x}{2\sqrt{x}}\right)=-2\cdot\dfrac{2x}{2\sqrt{x}}=-2\sqrt{x}\)

d: \(y'=\left(3sinx+4cosx-tanx\right)\)'

\(=3cosx-4sinx+\dfrac{1}{cos^2x}\)

e: \(y'=\left(4^x+2e^x\right)'\)

\(=4^x\cdot ln4+2\cdot e^x\)

f: \(y'=\left(x\cdot lnx\right)'=lnx+1\)

12 tháng 5 2016

\(y'=\frac{\frac{1}{x}x-\ln x}{x^2}+\frac{-\frac{1}{x}\left(x+\ln x\right)-\frac{1}{x}\left(x-\ln x\right)}{\left(1+\ln_{ }x\right)^2}=\frac{1-\ln x}{x^2}+\frac{-2}{x\left(1+\ln_{ }x\right)^2}\)

NV
30 tháng 6 2021

ĐKXĐ:

a. Không hiểu đề bài là gì

b. \(3-2cosx\ge0\)

\(\Leftrightarrow cosx\le\dfrac{3}{2}\) (luôn đúng)

Vậy \(D=R\)

c. \(\left\{{}\begin{matrix}\dfrac{1+cosx}{1-cosx}\ge0\left(luôn-đúng\right)\\1-cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow cosx\ne1\Leftrightarrow x\ne k2\pi\)

5 tháng 5 2016

xét hàm số y=ln(\(x+\sqrt{1+x^2}\))

Ta có

y'=\(\frac{1}{x+\sqrt{1+x^2}}\left(1+\frac{x}{\sqrt{1+x^2}}\right)=\frac{1}{x+\sqrt{1+x^2}}.\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}=\frac{1}{\sqrt{1+x^2}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).

Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)

b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\) 

Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)

 Vậy tập xác định của hàm số là \(D = \mathbb{R}\)