K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

ĐK: x-1# 0<=> x#1

2x(x-1)+3=3x

<=> 2x2 -2x+3=3x

<=> 2x2 -5x+3=0

Giải pt bậc 2 ta đc: x1 = 1 ( loại)

x2 =3/2

Vậy pt có nghiệm S={3/2}

a: \(\Leftrightarrow\dfrac{x\left(x^2-1\right)+x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{\left(2x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

=>\(x^3-x+x-1=2x^2+x-1\)

=>x^3-2x^2-x=0

=>x(x^2-2x-1)=0

=>x=0 hoặc \(x\in\left\{1+\sqrt{2};1-\sqrt{2}\right\}\)

c: =>(x-1)(x-2) căn 2x-3=0

=>\(x\in\left\{\dfrac{3}{2};2\right\}\)

2 tháng 4 2017

a) Công thức có nghĩa với x ∈ R sao cho 2x + 1 ≠ 0.

Vậy tập xác định của hàm số là:

D = { x ∈ R/2x + 1 ≠ 0} =

b) Tương tự như câu a), tập xác định của hàm số đã cho là:

D = { x ∈ R/x2 + 2x - 3 ≠ 0}

x2 + 2x – 3 = 0 ⇔ x = -3 hoặc x = 1

Vậy D = R {- 3; 1}.

c) có nghĩa với x ∈ R sao cho 2x + 1 ≥ 0

có nghĩa với x ∈ R sao cho 3 - x ≥ 0

Vậy tập xác định của hàm số là:

D = D1 ∩ D2, trong đó:

D1 = {x ∈ R/2x + 1 ≥ 0} =

D2 = {x ∈ R/3 - x ≥ 0} =


28 tháng 4 2017

a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)

3 tháng 5 2017

a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)


8 tháng 2 2019

\(\dfrac{1-x}{1+x}< 0 \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-x< 0\\1+x>0\end{matrix}\right.\\\left\{{}\begin{matrix}1-x>0\\1+x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left(1;+\infty\right)\\x\in\left(-\infty;-1\right)\end{matrix}\right.\)

Vậy \(x\in\left(-\infty;-1\right)\cup\left(1;+\infty\right)\) thỏa mãn

a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)

=>(2x-1)(x-2)(x+1)<>0

hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)

b: ĐKXĐ: x+5<>0

=>x<>-5

c: ĐKXĐ: x4-1<>0

hay \(x\notin\left\{1;-1\right\}\)

d: ĐKXĐ: \(x^4+2x^2-3< >0\)

=>\(x\notin\left\{1;-1\right\}\)

16 tháng 11 2022

TH1: x>-2

Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{x+2}\)

=>-6x^2+3x-4x+2=x^2+2x

=>-7x^2-3x+2=0

=>\(x=\dfrac{-3\pm\sqrt{65}}{14}\)

TH2: x<-2

Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{-x-2}=\dfrac{3x+2}{x+2}\)

=>6x^2-3x+4x-2=x^2+2x

=>6x^2+x-2=x^2+2x

=>5x^2-x-2=0

mà x<-2

nên \(x\in\varnothing\)

30 tháng 3 2017

a) \(\dfrac{2}{x+1}\) xác định với x≠-1, \(\sqrt{x+3}\) xác định với x ≥ -3

Tập xác định của y = là:

D = {x ∈ R/ x + 1 ≠ 0 và x + 3 ≥ 0} = [-3, +)\{-1}

Có thể viết cách khác: D = [-3, -1] ∪ (-1, +)

b) Tập xác định

D = {x ∈ R/ 2 -3x ≥ 0} ∩ {x ∈ R/ 1-2x ≥ 0}

= [-, 2323 ]∩(-, 1212) = (-, 1212)

c) Tập xác định là:

D = [1, +) ∪ (-,1) = R

22 tháng 12 2018

vui giúp mình với nha mọi người

28 tháng 12 2018

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:

\(-3=4a+b\)

Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:

\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)

Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)

b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:

\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)

Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé

Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R

\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)

Chọn các điểm:

x 1 3 -1 2 -2

y 4 0 0 3 -5

9 tháng 12 2018

5. \(y=\dfrac{-3x}{x+2}\)

xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)

vậy D= (\(-\infty;+\infty\))\{-2}

6. \(y=\sqrt{-2x-3}\)

xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)

vậy D= (\(-\infty;\dfrac{-3}{2}\)]

7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)

xác định khi: x-4 >0 <=> x>4

vậy D= (\(4;+\infty\))

8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)

xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)

vậy D= (\(-\infty;5\))\ {3}

9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)

xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)

vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]

9 tháng 12 2018

1. \(y=\dfrac{3x-2}{x^2-4x+3}\)

xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)

vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)

2.\(y=2\sqrt{5-4x}\)

xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)

vậy D= (\(-\infty;\dfrac{5}{4}\)]

3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)

xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)

vậy D= (\(-3;\dfrac{5}{2}\)]

4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)

xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)

Vậy D= [\(-2;9\)]\{2}