Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VT=\left|x-2010\right|+\left|x-2012\right|+\left|x-2016\right|=\left|x-2010\right|+\left|2016-x\right|+\left|x-2012\right|\)
\(\Rightarrow VT\ge\left|x-2010+2016-x\right|+\left|x-2012\right|=6+\left|x-2012\right|\ge6\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-2010\ge0\\2016-x\ge0\\x-2012=0\end{matrix}\right.\) \(\Rightarrow x=2012\)
Vậy nghiệm của pt là \(S=\left\{2012\right\}\)
a) \(=-7\left(x^2-\frac{10}{7}x+\frac{2016}{7}\right)\)
\(=-7\left(x^2-2.\frac{5}{7}x+\frac{25}{49}+\frac{14087}{49}\right)\)
\(=-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\)
ta có
\(\left(x-\frac{5}{7}\right)^2\ge0\)với mọi x
\(=>-7\left(x-\frac{5}{7}\right)^2\le0\)(nhân cả hai vế với -7)
\(=>-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\le-\frac{14087}{7}\)
trường hợp dấu "=" xảy ra khi và chỉ khi
\(\left(x-\frac{5}{7}\right)^2=0\)
\(=>x-\frac{5}{7}=0\)
\(=>x=\frac{5}{7}\)
vậy GTLN cảu biểu thức là \(-\frac{14087}{7}\) khi và chỉ khi x= \(\frac{5}{7}\)
\(\Leftrightarrow\dfrac{x+10}{2012}+1+\dfrac{x+8}{2014}+1+\dfrac{x+6}{2016}+1+\dfrac{x+4}{2018}+1=0\)
\(\Leftrightarrow\dfrac{x+2022}{2012}+\dfrac{x+2022}{2014}+\dfrac{x+2022}{2016}+\dfrac{x+2022}{2018}=0\Leftrightarrow x=-2022\)
do 2 pt tương đường nhau nên x = -2022 cũng là nghiệm của pt
\(\left(m-1\right)x+2020m-6=0\)
thay vào ta được : \(-2022\left(m-1\right)+2020m-6=0\)
\(\Leftrightarrow-2m+2022-6=0\Leftrightarrow-2m=-2016\Leftrightarrow m=1008\)
google chưa tính phí mà ! :v
\(\frac{x+1}{2016}+\frac{x+3}{2014}=\frac{x+5}{2012}+\frac{x+7}{2010}\)
\(\frac{x+1}{2016}+1+\frac{x+3}{2014}+1=\frac{x+5}{2012}+1+\frac{x+7}{2010}+1\)
\(\frac{x+2017}{2016}+\frac{x+2017}{2015}=\frac{x+2017}{2012}+\frac{x+2017}{2010}\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2012}-\frac{1}{2010}\right)=0\)
MÀ \(\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2012}-\frac{1}{2010}\right)\ne0\)
=> x + 2017 = 0
<=> x = -2017