K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Chọn D.

Do đó ta có bảng biến thiên sau:

Để hàm số nghịch biến trên khoảng (-1;1) thì 

1 tháng 10 2018

28 tháng 7 2019
https://i.imgur.com/6aR3ny6.jpg
28 tháng 7 2019

bài 1 bạn dò lại xem. Còn bài 2 tương tự

25 tháng 10 2018

Đáp án D

NV
27 tháng 3 2019

\(y'=f\left(x\right)=3x^2+6x-3m\)

Để hàm số đồng biến trên \(\left(-\infty;0\right)\)

- TH1: \(\Delta'\le0\Rightarrow9+9m\le0\Rightarrow m\le-1\)

- TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\S>0\\P\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-2>0\\-m>0\end{matrix}\right.\) \(\Rightarrow\) ko có m thỏa mãn

Vậy \(m\le-1\)

NV
13 tháng 3 2019

\(y'=-3x^2+6x+m\)

Để hàm số nghịch biến trên \(\left(0;+\infty\right)\Rightarrow y'\le0\) \(\forall x>0\)

\(\Rightarrow-3x^2+6x+m\le0\Leftrightarrow3x^2-6x\ge m\)

Đặt \(f\left(x\right)=3x^2-6x\Rightarrow m\le\min\limits_{\left(0;+\infty\right)}f\left(x\right)=f\left(1\right)=-3\)

\(\Rightarrow m\le-3\)

27 tháng 6 2018

D=R

y' = -3x2 +6x+m <0

Để hàm nghịch biến trên khoảng (0; +∞) thì

Δ>0 và x1<x2≤0

\(\left\{{}\begin{matrix}m>-3\\x1+x2\\x1\cdot x2>0\end{matrix}\right.< 0\)

12 tháng 11 2019