Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn cho một hàm số là hàm số bậc nhất thì nó phải có dạng y = ax + b, với a \(\ne\) 0. Do đó:
a) Điều kiện là: \(\sqrt{5-m}\ne0\) hay 5 - m > 0. Suy ra m < 5.
b) Điều kiện là: \(\dfrac{m+1}{m-1}\ne0\) hay m + 1 \(\ne\)0, m - 1 \(\ne\)0. Suy ra m \(\ne\pm1\)
a) Để hàm số y= \(\sqrt{5-m}\) (x-1) là bậc nhất:
ta có: a\(\ne\) 0 \(\Rightarrow\) \(\sqrt{5-m}\) \(\ne\) 0 \(\Rightarrow\) 5 - m > 0 \(\Rightarrow\) m < 5.
Vậy : m<5 thì hàm số y= \(\sqrt{5-m}\)(x - 1) là bấc nhất.
b) Để hàm số \(y=\dfrac{m+1}{m-1}x+3,5\) là bậc nhất:
ta có : a\(\ne0\) \(\Rightarrow\) \(\dfrac{m+1}{m-1}\ne0\Rightarrow\) m+1 \(\ne0,m-1\ne0\Rightarrow m\ne\pm1\)
Vậy: \(m\ne\pm1\) thì hàm số \(y=\dfrac{m+1}{m-1}x+3,5\) là bậc nhất.
để \(y=\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}=1\)
thì \(\left(\sqrt{3}-\sqrt{5}\right)x=1-\sqrt{5}-\sqrt{3}\)
\(\Leftrightarrow x=\frac{1-\sqrt{3}-\sqrt{5}}{\sqrt{3}-\sqrt{5}}\)
b.\(f^2\left(x\right)=\left[\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}\right]^2=8+2\sqrt{15}=\left(\sqrt{5}+\sqrt{3}\right)^2\)
\(\Leftrightarrow\left[\left(\sqrt{3}-\sqrt{5}\right)x+2\sqrt{5}+2\sqrt{3}\right]\left(\sqrt{3}-\sqrt{5}\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2\left(\sqrt{3}+\sqrt{5}\right)x}{\left(\sqrt{3}-\sqrt{5}\right)x}\end{cases}}\)
\(-1< =sin\left(x-\dfrac{pi}{5}\right)< =1\)
=>\(0< =sin\left(x-\dfrac{pi}{5}\right)+1< =2\)
=>\(0< =\sqrt{1+sin\left(x-\dfrac{pi}{5}\right)}< =\sqrt{2}\)
=>\(-3< =y< =\sqrt{2}-3\)
TGT là \(T=\left[-3;\sqrt{2}-3\right]\)
\(sin\left(x-\dfrac{\pi}{5}\right)\in\left[-1;1\right]\)
\(\Leftrightarrow\sqrt{1+sin\left(x-\dfrac{\pi}{5}\right)}\in\left[0;\sqrt{2}\right]\)
\(\Leftrightarrow\sqrt{1+sin\left(x-\dfrac{\pi}{5}\right)}-3\in\left[-3;\sqrt{2}-3\right]\)
Vậy \(y\in\left[-3;\sqrt{2}-3\right]\)