K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \sin \left( {x - \frac{\pi }{4}} \right) \le 1 \Rightarrow  - 2 \le 2\sin \left( {x - \frac{\pi }{4}} \right) \le 2\; \Rightarrow  - 2 - 1 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 2 - 1\)

\( \Rightarrow  - 3 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 1\)

Vây tập giá trị của hàm số \(y = 2\sin \left( {x - \frac{\pi }{4}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).

b) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \cos x \le 1 \Rightarrow 0 \le 1 + \cos x \le 2 \Rightarrow 0 \le \sqrt {1 + \cos x}  \le \sqrt 2 \;\; \Rightarrow  - 2 \le \sqrt {1 + \cos x}  - 2 \le \sqrt 2  - 2\)

Vậy tập giá trị của hàm số \(y = \sqrt {1 + \cos x}  - 2\) là \(T = \left[ { - 2;\sqrt 2  - 2} \right]\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \cos \left( {2x - \frac{\pi }{3}} \right) \le 1 \Leftrightarrow  - 2 \le 2{\rm{cos\;}}\left( {2x - \frac{\pi }{3}} \right) \le 2\;\; \Leftrightarrow  - 3 \le 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1 < 1\)

\( \Rightarrow \) Tập giá trị của hàm số \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).

b) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \sin x \le 1,\;\; - 1 \le \cos \alpha  \le 1\;\; \Leftrightarrow  - 2 \le \sin x + \cos x \le 2\)

\( \Rightarrow \) Tập giá trị của hàm số \(y = \sin x + \cos x\) là \(T = \left[ { - 2;2} \right]\).

12 tháng 9 2021

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)

3 tháng 4 2017

a) Ta có:

−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤√2(1+cosx+1≤3−1≤cos⁡x≤1,∀x∈R⇔0≤1+cos⁡x≤2⇔0≤2(1+cos⁡x)≤4⇔1≤2(1+cos⁡x+1≤3

Vậy y ≤ 3, ∀ x ∈ R

Dấu “ = “ xảy ra ⇔ cos x = 1 ⇔ x = k2π (k ∈ Z)

Vậy ymax = 3 khi x = k2π

b) Ta có:

Với mọi x ∈ R, ta có:

sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1sin⁡(x−π6)≤1⇔3sin⁡(x−π6)≤3⇔3sin⁡(x−π6)−2≤1⇔y≤1

Vậy ymax = 1 khi sin(x−π6)=1⇔x=2π3+k2π,k∈Z


31 tháng 8 2016

a)y=2cos(x+π/3)

-1<=cos(x+π/3)<=1

<=>-2<=2cos(x+π/3)<=2

--->min=-2,max=2

31 tháng 8 2016

không có điều kiện hả bạn ?

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

3 tháng 9 2016

a)\(\forall x\Rightarrow sinx\le1\Rightarrow1-sinx\ge0\)

cosx\(\ge-1\Rightarrow1+cosx\ge0\)

ĐK:cosx\(\ne-1\Leftrightarrow x\ne\pi+k2\pi\)

\(\Rightarrow D=\left\{R\backslash\left\{\pi+k2\pi\right\}\right\}\)

b)ĐK:\(cos\left(2x+\frac{\pi}{3}\right)\ne0\Leftrightarrow2x+\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{12}+\frac{k\pi}{2}\)

\(\Rightarrow D=\left\{R\text{\}\left\{\frac{\pi}{12}+\frac{k\pi}{2}\right\}\right\}\)