K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

Ta có

\(x+y+z\le z+z+z=3z\)

mà x+y+z=xyz

=>\(xyz\le3z\)

<=>\(xy\le3\)

Mà \(y\ge x\)

=>\(xy\ge x^2\)

<=>\(3\ge x^2\)

mà x là số nguyên dương =>x=1

Từ đó bạn giải tiếp và tìm ra y,z nha

Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.

3 tháng 1 2016

x,y,z thuộc (1;0;-1) ; (1;3;2)

28 tháng 12 2018

 1: Tìm x, y nguyên tố thoả mãn

                         y2 – 2x2 = 1

Hướng dẫn:

Ta có y2 – 2x2 = 1 ⇒ y2   = 2x2 +1 ⇒ y là số lẻ

Đặt y = 2k + 1 (với k nguyên).Ta có (2k + 1)2 = 2x2 + 1

⇔ x2 = 2 k2 + 2k ⇒ x chẵn , mà x nguyên tố ⇒ x = 2, y = 3

28 tháng 12 2018

2: Tìm nghiệm nguyên dương của phương trình

                             (2x + 5y + 1)(2|x|   + y + x + x) = 105

 Hướng dẫn:

Ta có: (2x + 5y + 1)(2|x|  + y + x + x) = 105

Ta thấy 105 lẻ ⇒ 2x + 5y + 1 lẻ ⇒ 5y chẵn ⇒ y chẵn

2|x| + y + x + x = 2|x| + y + x(x+ 1) lẻ

có x(x+ 1) chẵn, y chẵn ⇒ 2|x|  lẻ ⇒ 2|x| = 1 ⇒ x = 0

Thay x = 0 vào  phương trình ta được

(5y + 1) ( y + 1) = 105 ⇔ 5y2 + 6y – 104 = 0

⇒ y = 4 hoặc y = \displaystyle -\frac{26}{5} ( loại)

Thử lại ta có x = 0; y = 4 là nghiệm của phương trình

 7: Tìm nghiệm nguyên của phương trìnhx2 – 2y2 = 58: Tìm x, y là số tự nhiên thoả mãn                     x2 + 3y = 3026 9: Tìm x, y, z nguyên tố thoả mãn   xy + 1 = z10: Tìm nghiệm nguyên của phương trình                             x2 + y2 – x – y = 8 11: Tìm nghiệm nguyên của phương trình                                  x2 – 4xy + 5y2  =...
Đọc tiếp

 7: Tìm nghiệm nguyên của phương trình

x2 – 2y2 = 5

8: Tìm x, y là số tự nhiên thoả mãn

                     x2 + 3y = 3026

 9: Tìm x, y, z nguyên tố thoả mãn   xy + 1 = z

10: Tìm nghiệm nguyên của phương trình

                             x2 + y2 – x – y = 8

 

11: Tìm nghiệm nguyên của phương trình

                                  x2 – 4xy + 5y = 169

12: Tìm nghiệm nguyêm của phương trình

                        x2 – 5y2 = 0

 

13: Tìm nghiệm nguyên của phương trình

                    x2 + y2 + z2 = x2 y2

 

 14: Giải phương trình nghiệm nguyên

3x2 + y2 + 4xy + 4x + 2y + 5 = 0

 

15: Tìm nghiệm nguyên của phương trình

x2 – (y+5)x + 5y + 2 = 0

 

16: Tìm nghiệm nguyên của phương trình

x2 –xy + y2 = 3

12
28 tháng 12 2018

 16: Tìm nghiệm nguyên của phương trình

x2 –xy + y2 = 3

          Hướng dẫn:

Ta có x2 –xy + y2 = 3 ⇔ (x- \displaystyle \frac{y}{2})2 = 3 – \displaystyle \frac{3y_{{}}^{2}}{4}

Ta thấy (x- \displaystyle \frac{y}{2})2 = 3 – \displaystyle \frac{3y_{{}}^{2}}{4} ≥ 0

⇒ -2 ≤ y ≤ 2

⇒ y= ± 2; ±1; 0 thay vào phương trình tìm x

Ta được các nghiệm  nguyên của phương trình là :

(x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1)

28 tháng 12 2018

7: Tìm nghiệm nguyên của phương trình

x2 – 2y2 = 5

Hướng dẫn:

Một số phương pháp giải phương trình nghiệm nguyên-2

và x2 chia cho 5 có các số dư 1 hoặc 4

y2 chia cho 5 có các số dư 1 hoặc 4 ⇒ 2y2 chia cho 5 dư 2 hoặc 3

⇒ x2 – 2 y2 chia cho 5 dư ±1 hoặc ±2 (loại)

Vậy phương trình x2 – 2y2 = 5 vô nghiệm.

10 tháng 4 2018

Mình làm được bài 1, 2, 3 rồi. Các bạn giúp bài 4 nhé ! THANK YOU

10 tháng 4 2018

Có: \(\hept{\begin{cases}\left|7x-5y\right|\ge0\\\left|2z-3x\right|\ge0\\\left|xy+yz+zx-2000\right|\ge0\end{cases}}\)

\(\Rightarrow A=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\ge0\)

Dấu "="....

26 tháng 6 2019

#) Giải

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.  
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.  
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.  
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.  
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

                                      ~ Hok tốt ~

                                                                      Bài giải

                                       Vì x, y, z nguyên dương nên ta giả sử \(1\le x\le y\le z\)

                Theo bài ra \(1=\frac{1}{yz}+\frac{1}{yx}+\frac{1}{zx}< \frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}=\frac{3}{x^2}\)

                        \(\Rightarrow\text{ }x\le3\text{ }\Rightarrow\text{ }x=1\)

Thay vào đầu bài ta có : \(1+y+z=yz\text{ }\Rightarrow\text{ }y-yz+1=0\)

\(\Rightarrow\text{ }y\left(1-z\right)-\left(1-z\right)+2=0\)

\(\Rightarrow\text{ }\left(y-1\right)\left(1-z\right)=2\)

\(TH1\text{ : }y-1=1\text{ }\Rightarrow\text{ }y=2\text{ và }z-1=2\text{ }\Rightarrow\text{ }z=3\)

\(TH2\text{ : }y-1=2\text{ }\Rightarrow\text{ }y=3\text{ và }z-1=1\text{ }\Rightarrow\text{ }z=2\)

Vậy có hai cặp nghiệm nguyên thỏa mãn \(\left(1\text{ , }2\text{ , }3\right)\text{ ; }\left(1\text{ , }3\text{ , }2\right)\)

9 tháng 2 2019

xin lối phần 2 sai rồi các bạn ko cần làm phần 2 nha <3    :>>

5 tháng 1 2016

X+y+z=6

 Sorry,mk ko bik trình bày