Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8n+19 chia hết 4n+1
,4n+1 chia hết 4n+1=>2(4n+1)=8n+2 chia hết 4n+1
=>(8n+19-8n-2) chia hết 4n+1=>17 chia hết 4n+1=>4n+1 E Ư(17)=1;17;-1;-17 và n E N
=>n=0;4
THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !
1 /
B = 15 + 17 - 16
B = 16
mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra
2 /
a ) N = 1 đó
b ) N = 1 đó
cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1
còn lại tương tự nhé !
mình còn làm violympic nữa
ctv="cho toi voi" noi fonrt "cho" dong nghia voi tu "doi" hihi
a/ n2+4 chia het n+2=>n=0 co the con nhieu nua
b/13n chia het cho n-1=> n=2 co the con nhieu nua
neu muon tim het tat ca "n" thoa man ban biet phai lam gi
a,Vì 8 chia hết cho n+1
=> n+1 thuộc ước của 8
=> n+1 thuộc {1;2;4;8}
=>n thuộc {0;1;3;7}
Vậy n thuộc {0;1;3;7}
b, Ta có n+4 chia hết cho n+1
=> [(n+1)+3] chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1 thuộc ước của 3
=> n+1 thuộc {1;3}
=> n thuộc {0;2}
Vậy n thuộc {0;2}
c,(n+1) chia hết cho (n+1)
=> (n+1)(n+1) chia hết cho (n+1)
hay n^2 + 2n +1 chia hết cho (n+1)
=> (n^2 + 2n + 1)-(n^2 + 4) chia hết cho (n-1)
=> 2n + 1 -4 chia hết cho n-1
=> 2n-3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1
=> n=0
Vậy n=0
d,Do n và n-1 là hai số tự nhiên liên tiếp
=>(n;n-1)=1
=> 13 chia hết cho n-1
=> n-1 thuộc ước của 13
=>n-1 thuộc {1;13}
=>n thuộc {0;12}
Vậy n thuộc {0;12}
Xong k hộ mình nha
Ta có 2n+1=2(n-3)+7
Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3
Vì 2(n-3) chia hết cho n-3
=> 7 chia hết cho n-3
n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4
Nếu n-3=-1 => n=2
Nếu n-3=1 => n=4
Nếu n-3=7 => n=10
Ta có : \(2n+1⋮n-3\)
\(=>2n-6+7⋮n-3\)
\(Do:2n-6⋮n-3\)
\(=>7⋮n-3\)
\(=>n-3\inƯ\left(7\right)\)
Nên ta có bảng sau :
n-3 | 7 | 1 | -7 | -1 |
n | 10 | 4 | -4 | 2 |
Vậy ...
3n + 7 ⋮ n + 1
=> 3n + 3 + 4 ⋮ n + 1
=> 3(n + 1) + 4 ⋮ n + 1
3(n + 1) ⋮ n + 1
=> 4 ⋮ n + 1
=> n + 1 ∈ Ư(4) = {-1; 1; -2; 2; -4; 4}
=> n ∈ {-2; 0; -3; 1; -5; 3}
vậy_
n+1 chia hết cho n-4
=> n-4+5 chia hết cho n-4
=> n-4 chia hết cho n-4 ; 5 chia hết cho n-4
=> n-4 thuộc Ư(5)={1,5}
n-4=1 => n=5
n-5=5 => n=10
Vậy b={5,10}
n + 1 \(⋮\)n - 4
=> n - 4 + 5 \(⋮\)n - 4 mà n - 4 \(⋮\)n - 4 => 5 \(⋮\)n - 4
=> n - 4 \(\in\)Ư ( 5 ) = { 1 ; 5 }
=> n \(\in\){ 5 ; 9 }
Vậy n \(\in\){ 5 ; 9 }