Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 4 chia hết cho n - 1
=> ( n - 1 ) + 5 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n -1 thuộc Ư(5) = { 1 ; 5 }
=> n thuộc { 2 ; 6 }
Cách 1 :
Ta có : 3n + 4 chia hết cho n - 1
=> 3n - 3 + 7 chia hết cho n - 1
=> 3(n - 1) + 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
n - 1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
Cách 2 :
Ta có : \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=3+\frac{7}{n-1}\)
Để 3n + 4 chia hết cho n - 1 thì 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
n - 1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
Ta có:\(\frac{6n-5}{8-3n}=-\frac{6n-16}{3n-8}-\frac{11}{3n-8}=-2-\frac{11}{3n-8}\)
ĐỂ 6n-5 chia hết cho 8-3n thì 11 phải chia hết cho 3n-8 <=>\(3n-8\inƯ\left(11\right)\)
Mà \(Ư\left(11\right)=\left\{+-1;+-11\right\}\)
*)3n-8=1 => n=3(TM)
*)3n-8=-1 => n=7/3(L)
*)3n-8=11 => n=19/3(L)
*)3n-8=-11 => n=-1(L)
Vậy n=3 thì 6n-5 chia hết cho 8-3n
6n -5 chia hết cho 8-3n
8n -3 chia hết cho 8n-3
=> [8n-3] -[6n-5] chia hết cho 8-3n
=> 2n +2 chia hết cho 8-3n
=> 3. [2n+2] chia hết cho 8-3n => 6n +6 chia hết cho 8-3n
=> [6n+6] -[6n-5] chia hết cho 8-3n
=> 11 chia hết cho 8-3n
Ta có bảng:
8-3n | -1 | -11 | 1 | 11 |
n | 3 | 19/3 [loại vì \(\notin N\)] | 7/3[loại vì \(\notin N\) ] | -1[loại vì \(\notin N\)] |
Vậy n =3
\(6n+5=2\left(3n-1\right)+7\)
\(2\left(3n-1\right)\)chia hết cho \(3n-1\)nên 7 chia hết cho \(3n-1\)
Do đó \(3n-1\)nhận các giá trị \(7;1;-1;-7\)
Do đó n nhận các giá trị \(\frac{8}{3};\frac{2}{3};0;-2\)
Vì \(n\in N\)nên chỉ nhận giá trị là 0
Vậy \(n=0\)
3n + 13 chia hết cho n + 1
=> (3n + 3) + 10 chia hết cho n + 1
=> 3(n + 1) + 10 chia hết cho n + 1
=> 10 chia hết cho n + 1
=> n + 1 thuộc Ư (10), mà n thuộc Z
=> n + 1 thuộc {1; 2; 5; 10}
=> n thuộc {0; 1; 4; 9)
3n+13 chia hết cho n+1
3n+3 chia hết cho n+1
=>(3n+13)-(3n+3) chia hết chi n+1
=>10 chia hết cho n+1
\(\Rightarrow n+1\in\left\{1;2;5;10\right\}\)
\(\Rightarrow n\in\left(0;1;4;9\right)\)
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
n + 1 mà bạn