Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm STN x sao cho x nhỏ hơn hoặc bằng 200 . bt rằng khi chia x cho STN y thì đc thương là 4 và dư 35
a = b.4 + 35
=> b = (a-35)/4 ≤ (200 - 35)/4 = 165/4 < 168/4 = 42
Mặt khác: số dư là 35 => số chia b > 35
Vậy 35 < b < 42 => b có thể là 36; 37; 38; 39; 40; 41
Khi đó a sẽ lần lượt là (a = b.4 + 35): 179; 183; 187; 191; 195; 199
\(\text{a = b.4 + 35}\)
=> b = \(\frac{\text{(a-35)}}{4}\)\(\le\frac{\text{ (200 - 35)}}{4}\) = \(\frac{165}{4}\) < \(\frac{168}{4}\)\(\text{ = 42}\)
Mặt khác:\(\text{ số dư là 35}\) =>\(\text{ số chia b}\) >\(\text{ 35}\)
Vậy\(\text{ 35}\) < b < \(\text{42}\) => b có thể là \(\text{36; 37; 38; 39; 40; 41}\)Khi đó a sẽ lần lượt là (\(\text{a = b.4 + 35}\)):\(\text{ 179; 183; 187; 191; 195; 199 }\)
a-35 chia hết cho 4
bội của 4 { 0;4;16;20......164}
đem các số này cộng cho 35 sẽ đc a
Bài 1:
Theo đề bài ta có:
\(a=4q_1+3=9q_2+5\) (\(q_1\) và \(q_2\) là thương trong hai phép chia)
\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)
Mà \(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)
\(\Rightarrow a+13=36k\left(k\ne0\right)\)
\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)
Vậy \(a\div36\) dư \(23\)
Câu 1
Theo bài ra ta có:
\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)
\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)
và \(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)
Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1
nên a là bội của 4.9=36
\(\Rightarrow a+13=36k\left(k\in N\right)\)
\(\Rightarrow a=36k-13\)
\(\Rightarrow a=36.\left(k-1\right)+23\)
Vậy a chia 36 dư 23
a : b = 4 (dư 35)
=> a = 4b + 35 và b > 35
Vì a < 200 nên 4b + 35 < 200 => 4b < 165 => b < 42
Mà b > 35 nên b có thể bằng 36; 37 ; 38; 39; 40; 41
+) Nếu b = 36 thì a = 4.36 + 35 = 179
+) Nếu b = 37 thì a = 4.37 + 35 = 183
các trường hợp lại tương tự.
\(a=b.4+35\)
\(\Rightarrow b=\frac{\left(a-35\right)}{4}\le\frac{\left(200-35\right)}{4}=\frac{165}{4}<\frac{168}{4}=42\)
Mặt khác: Số dư là 35 => Số chia b > 35
Vậy 35 < b < 42 => b có thể là: 36 ; 37 ; 38 ; 39 ; 40 ; 41
Khi đó a sẽ lần lượt là ( a = b . 4 + 35 ) : 179 ; 183 ; 187 ; 191 ; 195 ; 199
Ta có : a < 200 .Mà khi chia a cho b thì b phải lớn hơn 35
4 . 36 + 35 = 179 ( chọn )
4 . 37 + 35 = 183 ( chọn )
4 . 38 + 35 = 187 ( chọn )
4 . 39 + 35 = 191 ( chọn )
4 . 40 + 35 = 195 ( chọn )
4 . 41 + 35 = 199 ( chọn )
4 . 42 + 35 = 203 ( loại )
Vậy các số a thỏa mãn a<200 mà a:b = 4 dư 35 là
179 , 183 , 187 , 191 ,195 , 199 .