\(x,y,z\)thỏa mãn \(2y^2x+x+y+1=x^2+2y^2+xy\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Xét nào:)

Từ giả thiết suy ra x + y + z > 3

Ta có: \(P=2x^2+xy+2y^2=\frac{5}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2\ge\frac{5}{4}\left(x+y\right)^2\)

Suy ra \(\sqrt{2x^2+xy+y^2}\ge\sqrt{\frac{5}{4}}.\left(x+y\right)=\frac{\sqrt{5}}{2}\left(x+y\right)\)

Tương tự hai BĐT còn lại và cộng theo vế: \(P\ge\sqrt{5}\left(x+y+z\right)\ge3\sqrt{5}\)

Đẳng thức xảy ra khi x = y = z = 1

Is it right?!?

3 tháng 8 2019

thank ban

16 tháng 12 2016

Ta có: 

\(2x^2+xy+2y^2=x^2+y^2+\frac{3}{4}\left(x+y\right)^2+\frac{1}{4}\left(x-y\right)^2\)

\(\ge\frac{2\left(x+y\right)^2}{4}+\frac{3\left(x+y\right)^2}{4}=\frac{5\left(x+y\right)^2}{4}\)

\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}\left(x+y\right)\). Tương tự ta có:

\(\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right);\sqrt{2z^2+xz+2x^2}\ge\frac{\sqrt{5}}{2}\left(x+z\right)\)

\(\Rightarrow M\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(x+z\right)\)

\(=\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)big_24.gif

16 tháng 12 2016

Cho mình hối tại sao đẳng thức sảy ra x=y=z=1/3 vậy

2 tháng 8 2019

cứ thấy sai sai   xy+yz +ca =3

9 tháng 3 2016

Ta chứng minh điều sau: Nếu \(a,b>0\) thì \(2a^2+ab+2b^2\ge\frac{5\left(a+b\right)^2}{4}.\)  Thực vậy bất đẳng thức cần chứng minh tương đương với
 \(8a^2+4ab+8b^2\ge5\left(a^2+2ab+b^2\right)\Leftrightarrow3\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0.\)

Quay lại bài toán, áp dụng nhận xét ta được

\(\sqrt{2x^2+xy+2y^2}\ge\frac{5\left(x+y\right)}{2},\sqrt{2y^2+yz+2z^2}\ge\frac{5\left(y+z\right)}{2},\sqrt{2z^2+zx+2x^2}\ge\frac{5\left(z+x\right)}{2}.\)

Cộng các bất đẳng thức lại ta sẽ được \(VT\ge\frac{5}{2}>\sqrt{5}.\)

8 tháng 3 2016

mn ơi ko OLM ko có khóa học lớp 9 àh