\(x,y,z\in Q\) biết:

a) \(|x+\frac{19}{5}|+|y+\frac{18}{19...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2019

ta thấy /x+19/5/>=0

           /y+18/19/>=0

           /x-2004/>=0

Mà /x+19/5/+/y+18/19/+/z-2004/=0

=> x+19/5=0=>x=-19/5

    y+18/19=0=>y=-18/19

z-2004=0=>z=2004

Câu còn lại tương tự nha bạn

Tích mik nha 

    

14 tháng 2 2021

b, \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)

vì \(\left|x+\frac{3}{4}\right|\ge0\forall x;\left|y-\frac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall z\)

Dâu ''='' xảy ra <=> x = -3/4 ; y = 1/5 ; \(-\frac{3}{4}+\frac{1}{5}+z=0\Leftrightarrow z=\frac{11}{20}\)

23 tháng 6 2017

Vì \(\left|x+\frac{19}{5}\right|\ge0\) với \(\forall x\)

\(\left|y+\frac{1890}{1975}\right|\ge0\) với \(\forall y\)

\(\left|z-2004\right|\ge0\)với \(\forall z\)

\(\Rightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{19}{5}\right|=0\\\left|y+\frac{1890}{1975}\right|=0\\\left|z-2004\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2004\end{cases}}\)

9 tháng 6 2017

Ta có : |3x - 4| + |3y + 5| = 0 

Mà : \(\left|3x-4\right|\le0\forall x\in R\)

         \(\left|3y+5\right|\ge0\forall x\in R\)

Nên |3x - 4| = |3y + 5| = 0 

Suy ra : 3x - 4 = 0 ; 3y + 5 = 0

    =>     3x = 4 ; 3y = -5

    => x = 4/3 ; y = -5/3

28 tháng 9 2020

a) Đề chắc là: \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\)

Ta có: \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\left(\forall x,y,z\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|=0\\\left|y+\frac{1890}{1975}\right|=0\\\left|z-2004\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{378}{395}\\z=2004\end{cases}}\)

28 tháng 9 2020

b) Ta có: \(\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\ge0\left(\forall x,y,z\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x+\frac{9}{2}\right|=0\\\left|y+\frac{4}{3}\right|=0\\\left|z+\frac{7}{2}\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{9}{2}\\y=-\frac{4}{3}\\z=-\frac{7}{2}\end{cases}}\)

4 tháng 7 2018

a) \(2\frac{1}{3}+\left(x-\frac{3}{2}\right)=\left(3-\frac{3}{2}\right)x\)

\(2\frac{1}{3}+x-\frac{3}{2}=3x-\frac{3}{2}x\)

\(2\frac{1}{3}-\frac{3}{2}=3x-\frac{3}{2}x-x\)

\(\frac{5}{6}=3x-\frac{3}{2}x-x\)

\(\frac{5}{6}=\left(3-\frac{3}{2}-1\right)x\)

\(\frac{5}{6}=\frac{1}{2}x\)

\(x=\frac{5}{6}:\frac{1}{2}\)

\(x=\frac{5}{3}\)

b) |3x-4|+|3y+5|=0

ĐK : \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|3y+5\right|\ge0\end{cases}}\Leftrightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\)

Mà |3x-4|+|3y+5|=0 nên :

\(\Rightarrow\hept{\begin{cases}3x-4=0\\3y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}3x=4\\3y=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{-5}{3}\end{cases}}\)

Vậy x=4/3 ; y=-5/3

c) \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\)

ĐK : \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{1890}{1975}\right|\ge0\\\left|z-2004\right|\ge0\end{cases}}\Leftrightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\)

Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\) nên :

\(\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1975}=0\\z-2004=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2004\end{cases}}\)

Vậy ...

2 tháng 1 2017

A) ta có \(\frac{X}{2}=\frac{Y}{3}\)=>\(\frac{X}{8}=\frac{Y}{12}\)(1)

\(\frac{Y}{4}=\frac{Z}{5}\)=>\(\frac{Y}{12}=\frac{Z}{15}\)(2)

Từ (1)và (2)=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x-y-z=28

đến đây tự làm

2 tháng 1 2017

c) \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}=0\)\(\left(y+0,4\right)^{100}=0\)\(\left(z-3\right)^{678}=0\)

+) \(\left(x-\frac{1}{5}\right)^{2004}=0\Rightarrow x-\frac{1}{5}=0\Rightarrow x=\frac{1}{5}\)

+) \(\left(y+0,4\right)^{100}=0\Rightarrow y+0,4=0\Rightarrow y=-0,4\)

+) \(\left(z-3\right)^{678}=0\Rightarrow z-3=0\Rightarrow z=3\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(\frac{1}{5};-0,4;3\right)\)

4 tháng 2 2019

Tớ làm lần lượt nhé.

Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)

\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)

\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)

\(\frac{y-2}{4}=1\Rightarrow y=6\)

\(\frac{z-3}{5}=1\Rightarrow z=3\)

4 tháng 2 2019

\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)

\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)

\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)

\(\Rightarrow x=7\cdot\frac{200}{35}=40\)

\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)

P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.