K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

Violympic toán 7

15 tháng 1 2020

Thế tại sao \(\left(x-2015\right)^2=1\)

\(\left(x-2015\right)^2=0\) mà lại không = các số khác vậy

27 tháng 12 2016

a) 2y+1.3x=12y=3y.22y

<=> 2y+1.3x=3y.22y <=> 3x-y=22y-y-1 <=> 3x-y=2y-1

Nếu x-y và y-1 khác 0 thì 2 vế 1 số là lẻ, 1 số là chẵn => ko có giá trị nào.

=> x-y=y-1=0 => x=y=1

30 tháng 6 2015

Vì mỗi số hạng trên là giá trị tuyệt đối nên \(\ge\) 0 \(\Rightarrow\) Không thể có trường hợp có 2 số đối nhau, số còn lại bằng 0

\(\Rightarrow\left|x-\frac{15}{8}\right|=0\) và \(\left|\frac{2015}{2016}-y\right|=0\) và \(\left|2007+z\right|=0\)

\(\Rightarrow x-\frac{15}{8}=0\) và \(\frac{2015}{2016}-y=0\) và \(2007+z=0\)

\(\Rightarrow x=\frac{15}{8}\) và \(y=\frac{2015}{2016}\) và \(z=\left(-2007\right)\)

30 tháng 6 2015

\(\left|x-\frac{15}{8}\right|\ge0;\left|\frac{2015}{2016}-y\right|\ge0;\left|2007+z\right|\ge0\)

 Vậy \(\left|x-\frac{15}{8}\right|+\left|\frac{2015}{2016}-y\right|+\left|2007+z\right|\ge0\)

\(\left|x-\frac{15}{8}\right|+\left|\frac{2015}{2016}-y\right|+\left|2007+z\right|=0\)

\(\Leftrightarrow\)\(\left|x-\frac{15}{8}\right|=0;\left|\frac{2015}{2016}-y\right|=0;\left|2007+z\right|=0\)

Vậy \(x=\frac{15}{8};y=\frac{2015}{2016};z=-2007\)

26 tháng 9 2016

Các bạn ơi giúp minh đi chiêu mai mình học rồi khocroikhocroi

Cảm ơn các bạn rất nhiều 

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

22 tháng 1 2017

ta có: 25 - y2 = 8(x - 2009)2

=> 8(x - 2009)2 \(\le25\)

=> \(\left(x-2009\right)^2\le\frac{25}{8}\)

mà (x - 2009)2 là số chính phương

=> (x - 2009)2 = { 0;1}

- Nếu (x - 2009)2 = 0

=> x - 2009 = 0 => x = 2009

=> 25 - y2 = 0 => y2 = 25 => y = \(\mp5\)

- Nếu (x - 2009)2 = 1

=> \(\left[\begin{matrix}x-2009=1\\x-2009=-1\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2010\\x=2008\end{matrix}\right.\)

=> 25 - y2 = 8 => y2 = 17 ( loại vì x;y E Z )

vậy ta có cặp (x;y) là (2009;5) ; (2009;-5) thỏa mãn yêu cầu đề bài

22 tháng 1 2017

25 - y² = 8(x - 2009)²
ta có: VP = 8(x - 2009)² ≥ 0, VP chia hết cho 8 (do x,y thuộc Z)
VT = 25 - y² ≥ 25
→ TH1: 25 - y² = 0 → y = ± 5 → x = 2009 (thỏa mãn)
TH2: 25 - y² = 8 → y = ± √17 (loại)
TH3: 25 - y² = 16 → y = ± 3

→ (x - 2009)² = 2 → x - 2009 = ± √2 (loại)
TH4: 25 - y² = 24 → y = ± 1

→ (x - 2009)² = 3 → x - 2009 = ± √3 (loại)
Vậy x = 2009 và y = \(\pm\)5
Mà x,y thuộc N (tập hợp số tự nhiên) nên

x = 2009 và y = 5