K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

 ĐKXĐ: \(y\ne0\)\(x+y=3\left(x-y\right)=\frac{2x}{y}\)

\(3x-3y-x-y-\frac{2x}{y}=0\)

\(2x-2y=\frac{2x}{y}\)

\(x-y=\frac{x}{y}\)

Làm nốt

21 tháng 7 2018

vì x + 2 = y + 1 = z + 3 => x = y - 1 = z + 1 ; y = x + 1 = z + 2; z = x + 1 = y - 2  và z < x < y

ta có (x-1/3).(y-1/2).(z-5)=0 => ta có 3 TH

TH1 z - 5 = 0 => z = 5 ; y = 7 ; x = 4

TH2 x - 1/3 = 0 => x = 1/3 ; y = 4/3 ; z = -2/3

TH3 y - 1/2 = 0 => y = 1/2 ; x = -1/2 ; z = -3/2

nhớ cho mik nha 

21 tháng 7 2018

Ta có:

\(\left(x-\frac{1}{2}\right).\left(y-\frac{1}{2}\right).\left(z-5\right)=0\)

\(\Rightarrow x-\frac{1}{2}=0;y-\frac{1}{2}=0\)hoặc \(z-5=0\)

Với \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)\(\Rightarrow\)\(x+2=\frac{1}{3}+2=\frac{7}{3}=y+1=z+3\)\(\Rightarrow y=...;z=...\)

Với \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\)\(\Rightarrow....\)

Với \(z-5=0\)\(\Rightarrow.....\)

B tự làm nốt nhé

19 tháng 10 2018

áp dụng BĐT

19 tháng 10 2018

Mình lớp 7 thôi, chưa học bất đẳng thức nha Trung Nguyễn Quang

24 tháng 12 2018

a) \(\left(x+1\right)\left(x-2\right)< 0\) khi 2 thừa số trái dấu

TH1: \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Leftrightarrow}-1< x< 2\left(chon\right)}\)

TH2: \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\Leftrightarrow}2< x< -1\left(loai\right)}\)

Vậy \(-1< x< 2\)( tự tìm x )

24 tháng 12 2018

b) \(\left(x-1\right)\left(x+3\right)>0\)khi 2 thừa số cùng dấu

TH1: \(\hept{\begin{cases}x-1>0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x>-3\end{cases}\Leftrightarrow}x>1}\)

TH2: \(\hept{\begin{cases}x-1< 0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -3\end{cases}\Leftrightarrow}x< -3}\)

Vậy hoặc x > 1 hoặc x < -3 thì thỏa mãn

13 tháng 11 2016

x+(-31/12)^2=(49/12)^2-x

x+x=(49/12)^2-(-31/12)^2

tính x

từ x tìm ra y

b)x(x-y):[y(x-y)]=3/10:(-3/50)=...

=>x/y=... =>x=...;y=...

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

26 tháng 7 2016

help me

28 tháng 5 2017

\(x\left(x-y\right)=\frac{3}{10}\)               ;                \(y\left(x-y\right)=-\frac{3}{50}\)

\(x^2-xy=\frac{3}{10}\)                   ;                 \(xy-y^2=-\frac{3}{50}\)

Ghép 2 vế , ta có :

\(x^2-xy-xy+y^2=\frac{3}{10}-\frac{-3}{50}\)

\(x^2-2xy+y^2=\frac{9}{25}\)

\(\left(x-y\right)^2=\frac{9}{25}\)

\(\orbr{\begin{cases}x-y=\frac{3}{5}\\x-y=-\frac{3}{5}\end{cases}}\)

Thay từng trường hợp x-y vào , ta tính được x,y 

24 tháng 9 2023

2023 =))