Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
- Theo bài ra: \(25-y^2=8\left(x-2009\right)^2\)
- Có: \(y^2\ge0;\text{ }\forall y\in R\)
\(\Rightarrow25-y^2\le25;\text{ }\forall y\in R\)
- Có \(\left\{{}\begin{matrix}25-y^2\ge25\\25-y^2=8\left(x-2009\right)^2\end{matrix}\right.\Rightarrow8\left(x-2009\right)^2\ge25\)
\(\Rightarrow\left(x-2009\right)^2\ge\dfrac{25}{8}=3\dfrac{1}{8}\)
\(\Rightarrow\left(x-2009\right)^2\in\left\{0;1\right\}\)
\(\Rightarrow x-2009\in\left\{0;1\right\}\) , do \(x\in N\)
\(\Rightarrow x\in\left\{2009;2010\right\}\)
Sau đó bạn thử từng trường hợp để tìm y nhé.
Kết quả cuối cùng là \(\left(x;y\right)=\left(2009;5\right)\)
\(\Leftrightarrow8\left(x-2009\right)^2⋮8;8\left(x-2009\right)^2\le25;x\in N\)
Tự giải tiếp nhé
\(25-y^2=8\left(x-2009\right)^2\)
Ta có: \(25-y^2\le25\)
\(\Rightarrow8\left(x-2009\right)^2\le25\)
\(\Rightarrow\left(x-2009\right)^2< 4\)
Do \(x\in N\Rightarrow\left[{}\begin{matrix}\left(x-2009\right)^2=1\\\left(x-2009\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2010\\x=2009\end{matrix}\right.\left(x\in N\right)\)
+) Xét x = 2010
\(\Rightarrow25-y^2=8\Rightarrow y^2=17\) ( loại )
+) Xét x = 2009
\(\Rightarrow25-y^2=0\Rightarrow y=5\left(y\in N\right)\)
Vậy x = 2009, y = 5
ta có: 25 - y2 = 8(x - 2009)2
=> 8(x - 2009)2 \(\le25\)
=> \(\left(x-2009\right)^2\le\frac{25}{8}\)
mà (x - 2009)2 là số chính phương
=> (x - 2009)2 = { 0;1}
- Nếu (x - 2009)2 = 0
=> x - 2009 = 0 => x = 2009
=> 25 - y2 = 0 => y2 = 25 => y = \(\mp5\)
- Nếu (x - 2009)2 = 1
=> \(\left[\begin{matrix}x-2009=1\\x-2009=-1\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2010\\x=2008\end{matrix}\right.\)
=> 25 - y2 = 8 => y2 = 17 ( loại vì x;y E Z )
vậy ta có cặp (x;y) là (2009;5) ; (2009;-5) thỏa mãn yêu cầu đề bài
25 - y² = 8(x - 2009)²
ta có: VP = 8(x - 2009)² ≥ 0, VP chia hết cho 8 (do x,y thuộc Z)
VT = 25 - y² ≥ 25
→ TH1: 25 - y² = 0 → y = ± 5 → x = 2009 (thỏa mãn)
TH2: 25 - y² = 8 → y = ± √17 (loại)
TH3: 25 - y² = 16 → y = ± 3
→ (x - 2009)² = 2 → x - 2009 = ± √2 (loại)
TH4: 25 - y² = 24 → y = ± 1
→ (x - 2009)² = 3 → x - 2009 = ± √3 (loại)
Vậy x = 2009 và y = \(\pm\)5
Mà x,y thuộc N (tập hợp số tự nhiên) nên
x = 2009 và y = 5
a) 2009 - |x - 2009| = x
=> |x - 2009| = 2009 - x (1)
ĐK : \(2009-x\ge0\Leftrightarrow x\le2009\)
Ta có (1) <=> \(\orbr{\begin{cases}x-2009=2009\\x-2009=-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2009\left(\text{loại}\right)\end{cases}}}\)
Vậy x = 0
b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2018}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2020}+\left|x+y-z\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)
\(\text{b)}\)
\(\text{Ta có: }\text{ }\left(2x-1\right)^{2018}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2020}\ge0\)
\(\text{ và}\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)=0\)
\(\text{Dấu "=" xảy ra khi:}\)
\(\left(2x-1\right)^{2018}=0\)
\(\Rightarrow2x-1\) \(=0\)
\(\Rightarrow2x\) \(=1\)
\(\Rightarrow x\) \(=\frac{1}{2}\)
\(\text{ và:}\left(y-\frac{2}{5}\right)^{2020}=0\)
\(\Rightarrow y-\frac{2}{5}\) \(=0\)
\(\Rightarrow y\) \(=\frac{2}{5}\)
\(\text{Nhớ k cho mình với nghe}\) :33
Do \(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\)
\(\Leftrightarrow y^2\le25\).Mà \(y\inℕ\) nên \(0\le y^2\le25\Leftrightarrow0\le y\le5\)
Mà \(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\)
\(\Rightarrow y\in\left\{1;3;5\right\}\)
Thay vào tìm x. :) Nhớ đk: \(x,y\inℕ\)
Ta có: \(25-y^2=8.\left(x-2009\right)^2\)
\(\Rightarrow8.\left(x-2009\right)^2+y^2=25\left(1\right)\)
Vì \(y^2\ge0\)nên \(\left(x-2009\right)^2\le\frac{25}{8}\)
\(\Rightarrow\left(x-2009\right)^2=0\)hoặc \(\left(x-2009\right)^2=1\)
Với \(\left(x-2009\right)^2=1\)thay vào \(\left(1\right)\), ta có:
\(8.1+y^2=25\)
\(\Rightarrow8+y^2=25\)
\(\Rightarrow y^2=17\)( loại )
Với \(\left(x-2009\right)^2=0\)thay vào \(\left(1\right)\), ta có:
\(8.0+y^2=25\)
\(\Rightarrow0+y^2=25\)
\(\Rightarrow y^2=25\)
\(\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)
Mà \(y\in N\)
\(\Rightarrow y=5,x=2009\)
Vậy \(x=2009,y=5\)