\(x,y\in Z\) : \(xy-7y+5x=0\)\(y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

mình làm rồi nhờ câu trả lời là 21

5 tháng 11 2016

Ta có

\(xy-7y+5x=0\)

\(\Leftrightarrow y=\frac{5x}{7-x}=-5+\frac{35}{7-x}\ge3\)

\(\Leftrightarrow\frac{35}{7-x}\ge8\Leftrightarrow7-x\le4\)

Vậy ta sẽ tìm x sao cho 7 - x là ước của 35 và \(0< 7-x\le4\)

\(\Rightarrow7-x=1\)

\(\Rightarrow x=6\Rightarrow y=30\)

NV
8 tháng 5 2019

Ta có \(xy+xz+yz\le\frac{\left(x+y+z\right)^2}{3}\)

\(\Rightarrow x+y+z+\frac{\left(x+y+z\right)^2}{3}\ge6\)

\(\Rightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)

\(\Rightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)

\(\Rightarrow x+y+z-3\ge0\) (do \(x+y+z+6>0\))

\(\Rightarrow x+y+z\ge3\)

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{3^2}{3}=3\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

//Hoặc cách khác sử dụng AM-GM:

\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\);

\(x^2+y^2+z^2\ge xy+xz+yz\Rightarrow2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)

Cộng vế với vế của 4 BĐT trên ta có:

\(3x^2+3y^2+3z^2+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

Cách khác:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{x^4}{x+xy}+\frac{y^4}{y+yz}+\frac{z^4}{z+zx}\geq \frac{(x^2+y^2+z^2)^2}{x+y+z+xy+yz+xz}\)

Áp dụng BĐT AM-GM ta có:

\(x^2+y^2+z^2\geq xy+yz+xz(1)\)

\(\Rightarrow 2(x^2+y^2+z^2)\geq 2(xy+yz+xz)\)

\(\Rightarrow 3(x^2+y^2+z^2)\geq (x+y+z)^2\)

\(\Rightarrow (x+y+z)^2\leq 3(x^2+y^2+z^2)\leq (xy+yz+xz)(x^2+y^2+z^2)\leq (x^2+y^2+z^2)^2\)

\(\Rightarrow x+y+z\le x^2+y^2+z^2(2)\)

Từ $(1);(2)$ suy ra:

\(P\geq \frac{(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)}=\frac{x^2+y^2+z^2}{2}\geq \frac{xy+yz+xz}{2}\geq \frac{3}{2}\)

Vậy $P_{\min}=\frac{3}{2}$

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{x^3}{y+1}+\frac{y+1}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{x^3}{y+1}.\frac{y+1}{4}.\frac{1}{2}}=\frac{3x}{2}\)

\(\frac{y^3}{z+1}+\frac{z+1}{4}+\frac{1}{2}\geq \frac{3y}{2}\)

\(\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\geq \frac{3z}{2}\)

Cộng theo vế và thu gọn:

\(\Rightarrow P\geq \frac{5}{4}(x+y+z)-\frac{9}{4}\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\((x+y+z)^2\geq 3(xy+yz+xz)\geq 9\)

\(\Rightarrow x+y+z\geq 3\)

\(\Rightarrow P\geq \frac{5}{4}(x+y+z)-\frac{9}{4}\geq \frac{5}{4}.3-\frac{9}{4}=\frac{3}{2}\)

Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$

7 tháng 5 2019

Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)

Tương tự: \(y^2+1\ge2y;z^2+1\ge2z\)

\(x^2+y^2\ge2xy\)  \(y^2+z^2\ge2yz\) \(z^2+x^2\ge2zx\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)

\(\Leftrightarrow x^2+y^2+z^2\ge3\)

Dấu bằng xảy ra khi x=y=z=1

làm hơi tắt thông cảm

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

a)

\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)

b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)

c)

\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)

d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)

f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)

g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)

\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)