K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 12 2020

Lớp 8 thì bài này hơi phức tạp, lớp 9 sử dụng delta kẹp biến sẽ dễ hơn

Hướng dẫn 1 câu, câu sau bạn tự làm nhé:

\(\left(2x^2-xy-y^2\right)+7x+2y-7=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+7x+2y-7=0\)

(Đến đây ta cần chuyển về dạng \(XY+a.X+b.Y+...\) để đưa về pt nghiệm nguyên quen thuộc.

Do đó ta cần phân tách \(7x+2y\) về dạng \(a\left(x-y\right)+b\left(2x+y\right)\)

\(7x+2y=a\left(x-y\right)+b\left(2x+y\right)\)

\(\Leftrightarrow7x+2y=\left(a+2b\right)x+\left(-a+b\right)y\)

Đồng nhất hệ số 2 vế: \(\left\{{}\begin{matrix}a+2b=7\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)

Do đó ta tách được như dưới đây, toàn bộ phần tách trên làm ở nháp):

\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)-7=0\)

(Dạng cơ bản \(XY+X+3Y-7=0\) rồi)

\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)+3-10=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x+y+1\right)+3\left(2x+y+1\right)=10\)

\(\Leftrightarrow\left(x-y+3\right)\left(2x+y+1\right)=10\)

Đến đây thì chỉ cần lập bảng ước số là xong

27 tháng 12 2020

Làm bằng cách lớp 9 như nào vậy anh . Anh hướng dẫn e trước năm sau đỡ phải hỏi lại :D

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi

7 tháng 11 2016

k mk đi 

mk 

làm cho

13 tháng 9 2016

a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3}{4}y^2+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\)

với mọi x,y

b/ \(x^2+5y^2+2x-4xy-16y+14=x^2-2x\left(2y-1\right)+\left(4y^2-4y+1\right)+\left(y^2-12y+36\right)-23\)

\(=\left(x-2y+1\right)^2+\left(y-6\right)^2-23\ge-23\)

Bạn xem lại đề

 

 

13 tháng 9 2016

2 câu trên đã có kết quả, mình giải quyết câu c nhá

5x2 + 10y2 - 6xy - 4x - 2y + 3 > 0

5x2 + 10y2 - 6xy - 4x - 2y + 3 = x2 + 4x2 + y2 + 9y2 - 6xy - 4x - 2y + 3

=[(2x)2 - 2*2x + 1] + (y2 - 2y + 1) + [(3y)2 - 2*3y + x2 ] + 1

=(2x + 1)2 + (y - 1)+ (3y - x)2 + 1

(2x + 1)2 \(\ge\)0 với mọi x

 (y - 1)\(\ge\) 0 với mọi y

 (3y - x)2\(\ge\) 0 với mọi x và y

1>0

=> ĐPCM

24 tháng 8 2020

a) Ta có :  x - 2y = 0

=> x = 2y

Khi đó A = 2.(2y)2 - 2y2 - 3.2yy - 2.2y.y2 + (2y)2.y + 5

= 8y2 - 2y2 - 6y2 - 4y3 + 4y+ 5

= 5

Vậy giá trị của A khi x - 2y = 0 là 5

b)Thay 11 = x - y vào biểu thức B ta có

\(B=\frac{3x-\left(x-y\right)}{2x+y}-\frac{3y+x-y}{2y+x}=\frac{2x+y}{2x+y}-\frac{2y+x}{2y+x}=1-1=0\)

Vậy giá trị của B khi x - y = 11 là 0

9 tháng 12 2018

1)\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x+1-y-2\right)\left(x+1+y+2\right)=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Xét ước

2) \(x^2+2y^2+3xy+3x+3y=15\)

\(\Leftrightarrow x^2+y^2+2xy+y^2+xy+3x+3y=15\)

\(\Leftrightarrow\left(x+y\right)^2+y\left(x+y\right)+3\left(x+y\right)=15\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y+3\right)=15\)

Xét ước

\(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow2x^2+4xy-2y^2-xy=7\)

\(\Leftrightarrow2x\left(x+2y\right)-y\left(x+2y\right)=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

Xét ước

14 tháng 9 2016

bạn làm rõ số mũ ở đâu ra dùm mình nhé, mình giải hết cho, nhưng câu b sai đề nhé bạnhihi