Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{5}{\sqrt{x}-1}\)
Để B nguyên thì: \(\sqrt{x}-1\inƯ\left(5\right)\)
Mà: Ư(5)={-1;1;-5;-5}
=> \(\sqrt{x}-1\in\left\{1;-1;5-;5\right\}\)
Ta có bảng sau:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
x | 4 | 0 | 36 | loại |
Vậy x={0;4;16}
Để B có giá trị nguyên thì 5 \(⋮\sqrt{x}-1\) \(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)\) \(\Rightarrow\sqrt{x}-1\in\left\{1;-1;5;-5\right\}\)
Ta có bảng:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
\(x\) | 4 | 0 | 36 | 16 |
Vậy \(x\in\left\{4;0;36;16\right\}\)
Để phân số \(B=\dfrac{5}{\sqrt{x}-1}\) có giá trị nguyên thì: \(5⋮\sqrt{x}-1\\ \Rightarrow\sqrt{x}-1\inƯ\left(5\right)\\ \Rightarrow\sqrt{x}-1\in\left\{\pm1;\pm5\right\}\)
Ta lập bảng sau:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
\(x\) | 4 | 0 | 36 | 16 |
Vậy \(x\in\left\{4;0;36;16\right\}\).
a) x khác 1
b) f(7)=\(\frac{3}{2}\)
c)\(\frac{x+2}{x-1}\)=\(\frac{1}{4}\)<=> 4(x+2)=x-1<=>x=-3
d) f(x)=\(\frac{x+2}{x-1}\)=\(\frac{x-1+3}{x-1}\)= 1+\(\frac{3}{x-1}\)
f(x) có giá trị nguyên <=> x-1 thuộc Ư(3) <=> x-1 thuộc {+1;+3}
x-1 | -1 | 1 | 3 | -3 |
x | 0 | 2 | 4 | -2 |
e) f(x)>1 <=> 1+\(\frac{3}{x-1}\)> 1 <=> \(\frac{3}{x-1}\)> 0 <=> x-1 >0 <=> x>1
Để \(M\in Z\Rightarrow5:\sqrt{2x+1}+2\Rightarrow5\in B\left(\sqrt{2x+1}+2\right)=\left(-1;1;-5;5\right)\)
\(\sqrt{2x+1}+2\) | -1 | 1 | -5 | 5 |
\(\sqrt{2x+1}\) | -3 | -1 | -7 | 3 |
\(2x+1\) | 0 có GTN | 0 có GTN | 0 có GTN | 9 |
\(2x\) | 0 có GTN | 0 có GTN | 0 có GTN | 8 |
\(x\) | 0 có GTN | 0 có GTN | 0 có GTN | 4 |
Vậy\(x=4\)
\(M\in Z\)mà\(\sqrt{2x+1}\ge0\Rightarrow\sqrt{2x+1}+2\ge2\Rightarrow\sqrt{2x+1}+2=5\Rightarrow\sqrt{2x+1}=3\Rightarrow2x+1=9\)
=> x = 4
Vì B \(\varepsilon\)Z =>\(\sqrt{X-1}\)chia hết cho (viết kí hiêu chia hết thay vào đi) 5
=> \(\sqrt{X-1}\)\(\varepsilon\)Ư[5]
=>\(\sqrt{X-1}\)\(\varepsilon\)[1,-1,5,-5]...(làm tiếp nha)
để N là số nguyên thì \(\frac{9}{\sqrt{x}-5}\in Z\)
\(\Rightarrow\text{ }9\text{ }⋮\text{ }\sqrt{x}-5\)
\(\Rightarrow\text{ }\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
Lập bảng ta có :
\(\sqrt{x}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
\(\sqrt{x}\) | 6 | 4 | 8 | 2 | 14 | -4 |
\(x\) | 36 | 16 | 64 | 4 | 196 | không tồn tại |
Để \(F=\dfrac{5}{\sqrt{x}+1}\) có giá trị nguyên thì \(5⋮\left(\sqrt{x}+1\right)\)
Suy ra \(\left(\sqrt{x}+1\right)\inƯ\left(5\right)\) hay \(\left(\sqrt{x}+1\right)\in\left\{1;-1;5;-5\right\}\)
Ta có bảng:
Vậy để \(F=\dfrac{5}{\sqrt{x}+1}\) có giá trị nguyên thì \(x\in\left\{0;2\right\}\)