Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
Để M = \(\frac{x+3}{2}\)\(\in\)Z <=> \(x+3⋮2\) <=> \(x+3\in\)B(2) = {0; 2; 4; ....}
<=> \(x\in\){-3; -1; 1; ....}
b) Để N = \(\frac{7}{x-1}\)\(\in\)Z <=> \(7⋮x-1\) <=> \(x-1\in\)Ư(7) = {1; -1; 7; -7}
Lập bảng :
x - 1 | 1 | -1 | 7 | -7 |
x | 2 | 0 | 8 | -6 |
Vậy ...
c) Ta có: P = \(\frac{x-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}\)
Để P \(\in\)Z <=> \(2⋮x+1\) <=> \(x+1\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng:
x + 1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy ...
để M nguyên thì \(\frac{x+3}{2}\) nguyên
=> (x+3) \(\in\)Ư(2)={-2:-1:1:2}
lập bảng ra tìm x nha bn ~!!
mấy ý kia tương tự !
\(x^2+4x-9=y^2\)
\(\Leftrightarrow x^2+4x+4-y^2=13\)
\(\Leftrightarrow\left(x+2\right)^2-y^2=13\)
\(\Leftrightarrow\left(x+2-y\right)\left(x+2+y\right)=13=1.13=13.1\)
Thay từng th vào nha
\(x^2+4x-9=y^2\)
\(x^2+4x+4-13-y^2=0\)
\(\left(x+2\right)^2-y^2=13\)
\(\left(x+2+y\right)\left(x+2-y\right)=13=1.13=13.1=\left(-1\right)\left(-13\right)=\left(-13\right)\left(-1\right)\)
Còn lại tự làm!
a) \(\frac{1-x}{x+4}=\frac{5-4-x}{x+4}=\frac{5}{x+4}-1\inℤ\Leftrightarrow\frac{5}{x+4}\inℤ\)
mà \(x\inℤ\Rightarrow x+4\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Leftrightarrow x\in\left\{-9,-5,-3,1\right\}\)
b) \(\frac{11-2x}{x-5}=\frac{1+10-2x}{x-5}=\frac{1}{x-5}-2\inℤ\Leftrightarrow\frac{1}{x-5}\inℤ\)
mà \(x\inℤ\Rightarrow x-5\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{4,6\right\}\)
c) \(\frac{x+1}{2x+1}\inℤ\Rightarrow\frac{2\left(x+1\right)}{2x+1}=\frac{2x+1+1}{2x+1}=1+\frac{1}{2x+1}\inℤ\Leftrightarrow\frac{1}{2x+1}\inℤ\)
mà \(x\inℤ\Rightarrow2x+1\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{-1,0\right\}\).
Thử lại đều thỏa mãn.