Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(2n^2-3n+1=2n\times\left(n-1\right)-\left(n-1\right)=\left(2n-1\right)\times\left(n-1\right)\Rightarrow2n-1⋮n-1\)
\(\Rightarrow2\left(n-1\right)+1⋮n-1\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\Rightarrow n=2\)
b.Tách tương tự nha
\(2n^2-3n+1=\left(2n^2-2n\right)-n+1=2n\left(n-1\right)-n+1\)\(\Rightarrow-n+1⋮n-1\Rightarrow-\left(n-1\right)⋮n-1\)
vậy với mọi x thuộc N đều t/m
b) tương tự nha
} \leq \sqrt{27}.\frac{(\frac{x}{3}+\frac{x}{3}+\dfrac{x}{3}+2r-x)^{2}}{16}= = \sqrt{27}.\frac{r^2}{4}$ chinh latex
a) Ta có
\(\left\{{}\begin{matrix}3n+1⋮2n+3\\2n+3⋮2n+3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}6n+2⋮2n+3\\6n+9⋮2n+3\end{matrix}\right.\)
=> 7\(⋮\) 2n + 3
Do n \(\in\) Z nên 2n + 3 \(\in\) Z
=> 2n + 3 \(\in\) Ư(7) ; 2n + 3 \(⋮̸\) 2
Ta có bảng
n | 2n + 3 | So với điều kiện n\(\in\) Z |
-1 | 1 | Thỏa mãn |
2 | 7 | Thỏa mãn |
-2 | -1 | Thỏa mãn |
-5 | -7 | Thỏa mãn |
Vậy n \(\in\) {-1;2;-2;5} là giá trị cần tìm
1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)
Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)
Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)
Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)
Tại \(n-1=1\Leftrightarrow n=1+1=2\)
Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)
2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)
Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)
Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)
Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)
Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)
\(=5n^2+5n⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=\left(6n^2+30n+n+5\right)-\left(6n^2-3n+10n-5\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10⋮2\)
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
a)\(\left(\frac{1}{5}\right)^{3n-1}=\frac{1}{25}\)
\(\Leftrightarrow\left(\frac{1}{5}\right)^{3n-1}=\left(\frac{1}{5}\right)^2\)
\(\Leftrightarrow3n-1=2\)
\(\Leftrightarrow3n=3\)
\(\Leftrightarrow n=1\)
b)\(\left(\frac{4}{7}\right)^{n+2}=\frac{7}{4}\)
\(\Leftrightarrow\left(\frac{4}{7}\right)^{n+2}=\left(\frac{4}{7}\right)^{-1}\)
\(\Leftrightarrow n+2=-1\)
\(\Leftrightarrow n=-3\)
c)\(\left(\frac{2}{3}\right)^{-n+1}=\frac{3^3}{2^3}\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{3}{2}\right)^3\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{2}{3}\right)^{-3}\)
\(\Leftrightarrow-n+1=-3\)
\(\Leftrightarrow n=-4\)
c)\(\left(0,7\right)^{3n+1}=10^3:7^3\)
\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{10}{7}\right)^3\)
\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{7}{10}\right)^{-3}\)
\(\Leftrightarrow3n+1=-3\)
\(\Leftrightarrow3n=-4\)
\(\Leftrightarrow n=-\frac{4}{3}\)
a)4n2-3n-1 chia hết cho 4n-1
<=>4n2-n-2n-1 chia hết cho 4n-1
<=>n(4n-1)-(2n+1) chia hết cho 4n-1
<=>2n+1 chia hết cho 4n-1
<=>2(2n+1) chia hết cho 4n-1
<=>4n-1+3 chia hết cho 4n-1
<=>3 chia hết cho 4n-1
=>4n-1 thuộc Ư(3)
=>Ư(3)={-1;1;-3;3}
Ta có bảng sau:
Vậy n thuộc {0;1}
b)4n2-3n-1 chia hết cho n-1
<=>4n2-4n+n-1 chia hết cho n-1
<=>4n(n-1)+n-1 chia hết cho n-1
<=>(4n+1)(n-1) chia hết cho n-1
<=>n thuộc N với mọi gtrị
P/s: "chia hết cho" thì viết kí hiệu vô
Is that T :))