K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

N=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)

= \(\frac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\)

= \(\frac{2\sqrt{x}-9}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}+\frac{2\sqrt{x}+1}{\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\)

= \(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

ĐKXĐ : x ≠ 4 ; x ≠ 9

Rút gọn :

=\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

= \(\frac{2\sqrt{x}-9+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1-\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

=\(\frac{2\sqrt{x}-9+\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

= \(\frac{2\sqrt{x}-9+x-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

= \(\frac{x-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

Để N =5 thì :

<=> \(\frac{x-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\) =5

<=> x-5 = \(\left(5\sqrt{x}-10\right)\left(\sqrt{x}-3\right)\)

<=> x-5 = 5x - \(15\sqrt{x}\) - \(10\sqrt{x}\) +30

<=> x-5x-25\(\sqrt{x}\) =35

9 tháng 8 2019

a) \(\sqrt{x}\ne3;\sqrt{x}\ne2\Rightarrow x\ne4;x\ne9\)

\(N=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)

\(\Leftrightarrow N=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(\Leftrightarrow N=\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(\Rightarrow N=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) \(N=5\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-3}=5\)

\(\Leftrightarrow\sqrt{x}+1=5\sqrt{x}-15\Leftrightarrow4\sqrt{x}=16\)

\(\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\) (thỏa mãn)

c) \(N=\frac{\sqrt{x}+1}{\sqrt{x}-5}=\frac{\sqrt{x}-5+6}{\sqrt{x}-5}=1+\frac{6}{\sqrt{x}-5}\)

để N \(\in\) Z thì \(\left(\sqrt{x}-5\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(\sqrt{x}-5\) 1 -1 2 -2 3 -3 6 -6
x 36 16 49 9 64 4 121 loại

10 tháng 8 2017

ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

a. Ta có \(P=\frac{3a+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-2}{\sqrt{a}-1}+\frac{1}{\sqrt{a}+2}-1\)

\(=\frac{3a+3\sqrt{a}-3-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{3a+3\sqrt{a}-3-a+4+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\)

b. Để \(\left|P\right|=2\Rightarrow\orbr{\begin{cases}P=2\\P=-2\end{cases}}\)

Với \(P=2\Rightarrow\sqrt{a}+1=2\sqrt{a}-2\Rightarrow\sqrt{a}=3\Rightarrow a=9\)

Với \(P=-2\Rightarrow\sqrt{a}+1=2-2\sqrt{a}\Rightarrow\sqrt{a}=\frac{1}{3}\Rightarrow a=\frac{1}{9}\)

c. Ta có \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)

Để \(P\in N\Rightarrow P\in Z\Rightarrow\sqrt{a}-1\in\left\{-2;-1;1;2\right\}\)

\(\sqrt{a}-1\)\(-2\)\(-1\)\(1\)\(2\)
\(\sqrt{a}\)\(-1\)\(0\)\(2\)\(3\)
\(a\) \(0\)\(4\)\(9\)
 \(\left(l\right)\)\(\left(tm\right)\)\(\left(tm\right)\)

\(\left(tm\right)\)

Vậy \(x\in\left\{0;4;9\right\}\)thì \(P\in N\)

10 tháng 10 2016

Ta sẽ chứng minh bằng quy nạp : 

Dễ thấy BĐT đúng với n = 1,2 

Giả sử BĐT đúng với n = k (k là số tự nhiên) , tức \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}\le k\sqrt{\frac{k+1}{2}}\) 

Ta sẽ chứng minh BĐT cũng đúng với n = k+1 , tức là \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k+1}\le\left(k+1\right)\sqrt{\frac{k+2}{2}}\)

Ta có : \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}\le k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}\)

Cần chứng minh \(k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}\le\left(k+1\right)\sqrt{\frac{k+2}{2}}\)

Điều này tương đương với \(k\sqrt{k+1}+\sqrt{2}.\sqrt{k+1}\le\left(k+1\right)\sqrt{k+2}\)

\(\Leftrightarrow\sqrt{k+1}\left(\sqrt{k^2+3k+2}-\sqrt{2}-k\right)\ge0\)

\(\Leftrightarrow\sqrt{k^2+3k+2}\ge k+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{k^2+3k+2}\right)^2\ge\left(k+\sqrt{2}\right)^2\) (Vì k là số tự nhiên)

\(\Leftrightarrow k^2+3k+2\ge k^2+2\sqrt{2}k+2\)

\(\Leftrightarrow3k\ge2\sqrt{2}k\) (luôn đúng)

Vậy giả thiết quy nạp đúng.

Ta có điều phải chứng minh.

10 tháng 10 2016

Ngoài cách của Hoàng Lê Bảo Ngọc, mình sẽ giải cho bạn cách khác

Áp dụng bất đẳng thức Bunhiakopski:

\(\left(x_1+x_2+x_3+...+x_n\right)^2\le n\left(x_1^2+x_2^2+x_3^2+...+x_n^2\right)\)

Suy ra ta có:

\(\left(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\right)^2\le n.\left(1+2+3+...+n\right)\)

\(\Leftrightarrow\left(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\right)^2\le n.\frac{n\left(n+1\right)}{2}\)

Do đó:

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le\sqrt{\frac{n^2\left(n+1\right)}{2}}\)

\(\Leftrightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le n.\sqrt{\frac{n+1}{2}}\)(đpcm)

15 tháng 10 2019

Đề bài là có vô số dâu căn nên ta có thể giải như sau:

\(\sqrt{x+2\sqrt{x+...+2\sqrt{x+2\sqrt{3x}}}}=x\)

\(\Leftrightarrow x+2\sqrt{x+...+2\sqrt{x+2\sqrt{3x}}}=x^2\)

\(\Leftrightarrow x+2x=x^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

AH
Akai Haruma
Giáo viên
15 tháng 11 2017

Lời giải:

\(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\) (bình phương hai vế)

\(\Leftrightarrow 2(\sqrt{yz}-\sqrt{3})=x-(y+z)\)

Đặt \(x-(y+z)=a\in \mathbb{Z}\)

\(\Rightarrow 2(\sqrt{yz}-\sqrt{3})=a\) (*)

\(\Leftrightarrow 4(yz+3-2\sqrt{3yz})=a^2\)

\(\Leftrightarrow 8\sqrt{3yz}=4(yz+3)-a^2\in\mathbb{Z}\)

Do đó, \(\sqrt{3yz}\in \mathbb{Z}\). Điều này kéo theo \(yz=3k^2\) với \(k\in\mathbb{Z}\)

Thay vào (*)

\(2(\sqrt{3k^2}-\sqrt{3})=a\Leftrightarrow 2\sqrt{3}(|k|-1)=a\)\(\in\mathbb{Z}\)

Ta thấy \(2(|k|-1)\in\mathbb{Z}; \sqrt{3}\) là một số vô tỷ và tích của chúng là một số nguyên, điều này chỉ có thể xảy ra khi \(|k|-1=0\Leftrightarrow |k|=1\)

\(\Rightarrow yz=3\)

Từ đây suy ra \((y,z)=(1,3)\) hoặc \((y,z)=(3,1)\)

Thay vào pt ban đầu ta tìm được \(x=4\)

Vậy \((x,y,z)=(4;1;3);(4;3;1)\)

15 tháng 11 2017

cái chỗ điều này kéo theo yz=3k^2 e k hỉu ạ

giải thích hộ e

AH
Akai Haruma
Giáo viên
15 tháng 8 2018

Lời giải

Với mọi $n\in\mathbb{N}$ ta có:

\(\frac{1}{\sqrt{1}}> \frac{1}{\sqrt{n}}\)

\(\frac{1}{\sqrt{2}}> \frac{1}{\sqrt{n}}\)

.....

Do đó:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}> \underbrace{\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}}_{\text{n số}}=\frac{n}{\sqrt{n}}=\sqrt{n}\)

(chứng minh xong vế 1)

Vế 2:

\(\frac{1}{2\sqrt{1}}+\frac{1}{2\sqrt{2}}+...+\frac{1}{2\sqrt{n}}< \frac{1}{\sqrt{0}+\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(=\frac{\sqrt{1}-\sqrt{0}}{1-0}+\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{n}-\sqrt{n-1}}{n-(n-1)}\)

\(=\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}+...+\sqrt{n}-\sqrt{n-1}=\sqrt{n}\)

\(\Rightarrow \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\) (đpcm)

Vậy....