K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018


2n-n+2 2 2n+1 n-1 2n+n 2 -2n+2 -2n-2 4 Để 2n2-n+2 chia hết cho 2n+1

Thì 4chia hết cho 2n+1

=> 2n+1∈Ư(4)={\(\pm\)2}

1. 2n+1=-2

=> n=-3:2

=-1,5

2. 2n+1=2

=> n=1:2

=0,5

Vậy n∈{-1,5;0,5}

Đúng thì tick nha,oaoa

8 tháng 10 2016

Ta có: 2n2+5n-1

=(2n2+2n+2n)+n-1

=2n​(n+2)+n-1

=(2n-1)(2n+2)

Vì 2n-1chia hết cho 2n-1 nên suy ra (2n-1)(2n+2) chia hết cho 2n-1

Vậy 2n2+5n-1 chia hết cho 2n-1

 

 

 

6 tháng 11 2019

Ta có:

\(2n^2-n+2\)

\(=2n^2+n-2n-1+3\)

\(=n.\left(2n+1\right)-\left(2n+1\right)+3\)

\(\Rightarrow n.\left(2n+1\right)⋮\left(2n+1\right)\)

\(\Rightarrow2n+1⋮2n+1\)

\(\Rightarrow3⋮2n+1\)

\(\Rightarrow2n+1\inƯC\left(3\right).\)

\(\Rightarrow2n+1\in\left\{1;-1;3;-3\right\}.\)

Có 4 trường hợp:

\(\Rightarrow\left[{}\begin{matrix}2n+1=1\\2n+1=-1\\2n+1=3\\2n+1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n=0\\2n=-2\\2n=2\\2n=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=-1\\n=1\\n=-2\end{matrix}\right.\)

Vậy \(n\in\left\{0;-1;1;-2\right\}.\)

Chúc bạn học tốt!

16 tháng 7 2018

Ta có: \(\frac{2n^2-n+2}{2n+1}=\frac{2n^2+n-2n-1+3}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}=\frac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}\)

Vì (2n+1) chia hết cho 2n+1 => (2n+1)(n-1) chia hết cho 2n+1

Nên để 2n2 - n + 2 chia hết cho 2n + 1 thì 3 phải chia hết cho 2n+1

=> \(2n+1\inƯ\left(3\right)=\left\{-1;1;3;-3\right\}\)

Nếu 2n + 1 = 1 thì n = 0 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = -1 thì n = -1 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = 3  thì n = 1 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = -3 thì n = -2 (thỏa mãn x thuộc Z)

Vậy để 2n2 - n + 2 chia hết cho 2n + 1 <=> n = {0;-1;-2;1}

16 tháng 7 2018

ta có: 2n2 - n + 2 chia hết cho 2n + 1

=> 2n2 + n - 2n + 2 chia hết cho 2n + 1

n.(2n+1) - ( 2n + 1) + 3 chia hết cho 2n + 1

(2n+1).(n-1) + 3 chia hết cho 2n + 1

mà (2n+1).(n-1) chia hết cho 2n + 1

=> 3 chia hết cho 2n + 1

=>...

1 tháng 11 2017

2n² - n + 2. │ 2n + 1 
2n² + n....... ├------------ 
------------------ I n - 1 
.......-2n + 2 
.......-2n - 1 
_____________ 


Để chia hết thì: 3 phai chia hết cho ( 2n + 1) 

hay (2n + 1) la ước của 3 
Ư(3) = {±1 ; ±3} 
______________________________ 
+) 2n + 1 = 1 <=> n = 0 
+) 2n + 1 = -1 <=> n = -1 
+) 2n + 1 = 3 <=> n = 1 
+) 2n + 1 = -3 <=> n = -2 


Vậy n ∈{0;-2 ; ±1}

1 tháng 11 2017

Ta có: 2n2 – n + 2 : (2n + 1) 

2015-10-01_000139 

Ta có: n ∈ Z và 2n2 – n + 2 chia hết cho 2n +1 thì 2n + 1 là ước của 3. Ước của 3 là ±1; ± 3 

Khi 2n + 1 = 1 ⇔2n = 0 ⇔ n = 0 
Khi 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1 
Khi 2n + 1 = 3 ⇔ 2n = 2 ⇔ n – 1 
Khi 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2 
Vậy, n = 0 hoặc n = – 1 hoặc n = 1 hoặc n = -2.

14 tháng 10 2022

b: =>n^2+4n-2n-8+14 chia hết cho n+4

=>\(n+4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)

hay \(n\in\left\{-3;-5;-2;-6;3;-11;10;-18\right\}\)

c: Sửa đề: \(n^4-2n^3+2n^2-2n+1⋮n-1\)

=>\(n^4-n^3-n^3+n^2+n^2-n-n+1⋮n-1\)

\(\Leftrightarrow\left(n-1\right)\left(n^3-n^2+n-1\right)⋮n-1\)(luôn đúng)

3 tháng 6 2017

undefined

5 tháng 6 2017

2

\(\dfrac{n^3-8n^2+2n}{n^2+1}=\dfrac{n\left(n^2+1\right)-8\left(n^2+1\right)+n+8}{n^2+1}\)

để n3-8n2+2n chia hết cho n2+1 thì (n+8) phải chia hết cho n2+1

với n=0=> \(\dfrac{n+8}{n^2+1}=8\left(tm\right)\)

với n=1 => \(\dfrac{n+8}{n^2+1}=\dfrac{9}{2}->loai\)

với n=2=> \(\dfrac{n+8}{n^2+1}=2->tm\)

với n=3 => \(\dfrac{n+8}{n^2+1}=\dfrac{11}{10}\left(loai\right)\)

với \(n\ge4\) => \(n+8< n^2+1\)

Vậy n=0 và n=2

1 tháng 8 2016

2n -n +2 2 2n+1 n -2n -n 2 -2n +2 -1 2n +1 3

\(\frac{2n^2-n+2}{2n+1}=\left(n-1\right)+\frac{3}{2n+1}\)

Để \(\left(2n^2-n+2\right)\)chia hết \(\left(2n+1\right)\)thì \(3\)chia hết \(2n+1\)

\(\Rightarrow2n+1\)là ước của 3.

mà -1 ; 1; -3 ; 3 là ước của 2

\(\cdot2n+1=-1\Rightarrow n=-1\)(nhận)

\(\cdot2n+1=1\Rightarrow n=0\)(nhận)

\(\cdot2n+1=-3\Rightarrow n=-2\)(nhận)

\(\cdot2n+1=3\Rightarrow n=1\)(nhận)

Vậy \(n=-2;-1;0;1\)thi \(2n^2-n+2\)chai hết cho 2n +1.