Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)
b: \(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)
Bài 2:
\(A+B=4x^4-5xy+5y^2+3x^2+2xy-y=4x^4+3x^2-3xy+5y^2-y\)
\(A-B=4x^4-5xy+5y^2-3x^2-2xy+y=4x^4-3x^2+5y^2-7xy+y\)
\(B-A=-\left(A-B\right)=-4x^4+3x^2-5y^2+7xy-y\)
a, \(Q=M-N=x^2+7xy+5y^2-4x+8y+x^2-5xy-5y^2+4x+16\)
\(=2x^2+2xy+8y+16\)
b, \(Q=2x^2+2xy+8y+16\)
\(=2x\left(x+y\right)+8y+16\)
\(=2x\left(x+y\right)+8\left(y+2\right)\)
\(=8x+8\left(y+2\right)\) ( do x + y = 4 )
\(=8\left(x+y+2\right)=8.6=48\)
Vậy...
\(2A=2\cdot\left(4x^2-5xy+2x-5y+5y^2\right)\)
\(=8x^2-10xy+4x-10y+10y^2\)
\(3B=3\cdot\left(-3x^2+2xy-5y+y^2\right)\)
\(=-9x^2+6xy-15y+3y^2\)
\(5C=5\cdot\left(-x^2+3xy+2x+2y^2\right)\)
\(-5x^2+15xy+2x+2y^2\)
\(2A+3B\)
\(8x^2-10xy+4x-10y+10y^2-9x^2+6xy-15y+3y^2\)
\(=-x^2-4xy+4x-25y+13y^2\)
\(\left(2A+3B\right)-5C\)
\(=-x^2-4xy+4x-25y+13y^2-\left(\text{}\text{}-5x^2+6xy+10x+10y^2\right)\)
\(=-x^2-4xy+4x-25y+13y^2+5x^2-6xy-10x-10y^2\)
\(=4x^2-10xy-6x-25y+3y^2\)
vậy 2A+3B-5C=\(4X^2-10XY-6X-25Y+3Y^2\)
Ti ck nha
\(P=x^2+5y^2+2xy-4x-8y+2015\)
\(=\left(x^2+y^2+2xy\right)-4\left(x+y\right)+4+4y^2-4y+1+2010\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\)
\(\Rightarrow GTNN\) của \(P=2010\) khi \(x=\dfrac{3}{2};y=\dfrac{1}{2}\)
\(P=x^2+5y^2+2xy-4x-8y+2015\)
\(P=\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4+4y^2-4y+1+2010\)
\(P=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\)
Vậy GTNN của P = 2010 khi (x + y - 2)2 + (2y - 1)2 = 0 \(\Leftrightarrow x=\dfrac{3}{2};y=\dfrac{1}{2}\)