Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(D=R\backslash\left\{1\right\}\)
b) \(y\left(x\right)\) xác định khi:
\(cos\dfrac{x}{3}\ne0\Leftrightarrow\dfrac{x}{3}\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x\ne\dfrac{3\pi}{2}+k3\pi\)
\(D=R\backslash\left\{\dfrac{3\pi}{2}+k3\pi\right\};k\in Z\)
c) \(y\left(x\right)\) xác định khi:
\(sin2x\ne0\Leftrightarrow2x\ne k\pi\)\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\).
\(D=R\backslash\left\{\dfrac{k\pi}{2}\right\};k\in Z\)
d) \(y\left(x\right)\) xác định khi:
\(x^2-1\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\).
\(D=R\backslash\left\{1;-1\right\}\)
a) Cách 1: y' = (9 -2x)'(2x3- 9x2 +1) +(9 -2x)(2x3- 9x2 +1)' = -2(2x3- 9x2 +1) +(9 -2x)(6x2 -18x) = -16x3 +108x2 -162x -2.
Cách 2: y = -4x4 +36x3 -81x2 -2x +9, do đó
y' = -16x3 +108x2 -162x -2.
b) y' = .(7x -3) +(7x -3)'= (7x -3) +7.
c) y' = (x -2)'√(x2 +1) + (x -2)(√x2 +1)' = √(x2 +1) + (x -2) = √(x2 +1) + (x -2) = √(x2 +1) + = .
d) y' = 2tanx.(tanx)' - (x2)' = .
e) y' = sin = sin.
Lời giải:
a) y' = = , y" = = = .
b) y' = = ;
y" = = = .
c) y' = ; y" = = = .
d) y' = 2cosx.(cosx)' = 2cosx.(-sinx) = - 2sinx.cosx = -sin2x,
y" = -(2x)'.cos2x = -2cos2x.
Bài 2. a) Hàm số đã cho không xác định khi và chỉ khi sinx = 0. Từ đồ thị của hàm số y = sinx suy ra các giá trị này của x là x = kπ. Vậy hàm số đã cho có tập xác định là R {kπ, (k ∈ Z)}.
b) Vì -1 ≤ cosx ≤ 1, ∀x nên hàm số đã cho không xác định khi và chỉ khi cosx = 1. Từ đồ thị của hàm số y = cosx suy ra các giá trị này của x là x = k2π. Vậy hàm số đã cho có tập xác định là R {k2π, (k ∈ Z)}.
c) Hàm số đã cho không xác định khi và chỉ khi .
Hàm số đã cho có tập xác định là R {}.
d) Hàm số đã cho không xác định khi và chỉ khi
Hàm số đã cho có tập xác định là R {}.
a) \(dy=d\left(tan^2x\right)=\left(tan^2x\right)'dx=2tanx.\left(tanx\right)'dx=\dfrac{2tanx}{cosx}dx\)
b) \(dy=d\left(\dfrac{cosx}{1-x^2}\right)=\left(\dfrac{cosx}{1-x^2}\right)'dx=\dfrac{\left(cosx\right)'.\left(1-x^2\right)-cosx\left(1-x^2\right)'}{\left(1-x^2\right)^2}dx=\dfrac{\left(x^2-1\right).sinx+2xcosx}{\left(1-x^2\right)^2}=dx\)