Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^3+b^3+3\text{a}b-1\)
= \(\left(a+b\right)^3-3ab\left(a+b\right)+3ab-1\)
\(=\left[\left(a+b\right)^3-1\right]-3ab\left(a+b-1\right)\)
\(=\left(a+b-1\right)\left[\left(a+b\right)^2+\left(a+b\right)+1-3ab\right]\)
\(=\left(a+b-1\right)\left(a^2+b^2-ab+a+b+1\right)\)
Xét: \(a^3+b^3+3\text{a}b-1\) là số nguyên tố với a; b là số nguyên dương
+) Th1: a + b - 1 = 1 và \(a^2+b^2-ab+a+b+1\) là số nguyên tố
<=> a + b = 2 và 7 - 3ab là số nguyên tố
Vì a; b nguyên dương nên a + b = 2 => a = b = 1 => 7 - 3ab = 7 - 3 = 4 không là số nguyên tố
=> Loại
+) Th2: \(a^2+b^2-ab+a+b+1\) = 1 và a + b - 1 là số nguyên tố
Ta có: \(a^2+b^2-ab+a+b+1=1\)
<=> \(a^2+\left(1-b\right)a+b^2+b=0\)
<=> \(a^2+2a\frac{\left(1-b\right)}{2}+\frac{\left(1-b\right)^2}{4}-\frac{1-2b+b^2}{4}+b^2+b=0\)
<=> \(\left(a+\frac{1-b}{2}\right)^2+\frac{3b^2+6b-1}{4}=0\)(1)
Với b nguyên dương ta có: \(b\ge1\Rightarrow\frac{3b^2+6b-1}{4}\ge2>0\)
=> (1) vô nghiệm
=> Loại
Vậy không tồn tại a; b nguyên dương
* Nếu a, b, c không có số nào là 3
=> a² chia 3 dư 1 ; b² chia 3 dư 1; c² chia 3 dư 1
=> a²+b²+c² chia hết cho 3 vô lí do gt nguyên tố và hẳn nhiên a²+b²+c² > 3
* Hơn nữa còn thấy không thể có số 2, vì nếu có 1 số là 2, 2 số còn lại là lẻ
=> a²+b²+c² chẳn => không nguyên tố
*Vậy phải có 1 số là 3, và không có số 2 => 3 số ng tố liên tiếp chỉ có thể là 3,5,7
Kiểm tra lại: 3²+5²+7² = 83 nguyên tố
1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)
Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ
Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ
a2+ b2 = 2234 không chia hết cho 5
Giả sử cả a2, b2 đều không chia hết cho 5
-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)
Mà a2+ b2 = 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai
Giả sử a=5 -> a2= 25
b2= 2209
b2= 472
-> b=47
Vậy hai số cần tìm là 5 và 47
Đặt ab|a−b|ab|a−b| =c
⇒ab=c|a-b|
c là số nguyên tố⇒⎡⎣a⋮cb⋮c[a⋮cb⋮c
c là số nguyên tố⇒c∈{2,3,5,7}
TH1:c=2
⇒ab=2|a-b|
+)a>b⇒b=b=2aa+22aa+2=2-4a+24a+2 ∈N
⇒a=2
⇒b=1
+)a<b⇒a=a=2bb+22bb+2=2-4b+24b+2 ∈N
⇒b=2
⇒a=1
CMT²⇒......