Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a:b:c=2:5:3\)
\(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau; ta có :
\(\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}=\frac{2a+b-4c}{4+5-12}=-\frac{21}{-3}=7\)
\(\frac{a}{2}=7\Rightarrow a=14\)
\(\frac{b}{5}=7\Rightarrow b=35\)
\(\frac{c}{3}=7\Rightarrow c=21\)
Ta có : \(a:b:c=2:5:3\)
\(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\) và \(2a+b-4c=-21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{3}=\frac{2a+b-4c}{2.2+5-4.3}=\frac{-21}{-3}=7\)
\(\Rightarrow\begin{cases}\frac{a}{2}=7\Rightarrow a=7.2=14\\\frac{b}{5}=7\Rightarrow b=7.5=35\\\frac{c}{3}=7\Rightarrow c=7.3=21\end{cases}\)
Vậy ................
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{2a+b-4c}{4+5-12}=\frac{-21}{-3}=7\)
\(\frac{2a}{4}=7\Rightarrow a=\frac{7\times4}{2}=14\)
\(\frac{b}{5}=7\Rightarrow b=5\times7=35\)
\(\frac{4c}{12}=7\Rightarrow c=\frac{12\times7}{4}=21\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
\(=>\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Khi đó : \(2a^2+2b^2-3c^2=-100\)
\(< =>2\left(3k\right)^2+2\left(4k\right)^2-3\left(5k\right)^2=-100\)
\(< =>2.9.k^2+2.16.k^2-3.25.k^2=-100\)
\(< =>19k^2+32k^2-75k^2=-100\)
\(< =>k^2\left(51-75\right)=-100\)
\(< =>-24k^2=-100\)
\(< =>k^2=\frac{25}{6}\)\(< =>k=\pm\frac{5}{\sqrt{6}}\)
Với \(k=\frac{5}{\sqrt{6}}\)thì \(\hept{\begin{cases}a=\frac{15}{\sqrt{6}}\\b=\frac{20}{\sqrt{6}}\\c=\frac{25}{\sqrt{6}}\end{cases}}\)
Với \(k=-\frac{5}{\sqrt{6}}\)thì \(\hept{\begin{cases}a=-\frac{15}{\sqrt{6}}\\b=-\frac{20}{\sqrt{6}}\\c=-\frac{25}{\sqrt{6}}\end{cases}}\)
Vậy ta có 2 bộ số sau \(\left\{\frac{15}{\sqrt{6}};\frac{20}{\sqrt{6}};\frac{25}{\sqrt{6}}\right\};\left\{-\frac{15}{\sqrt{6}};-\frac{20}{\sqrt{6}};-\frac{25}{\sqrt{6}}\right\}\)
b) áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2\cdot4^2}=\frac{a^2-b^2+2c^2}{2^2-3^2+2\cdot4^2}=\frac{108}{27}=4\)
\(\frac{a^2}{2^2}=4\Rightarrow a^2=4\cdot2^2=16\Rightarrow a=\sqrt{16}=4\)
\(\frac{b^2}{3^2}=4\Rightarrow b^2=4\cdot3^2=36\Rightarrow b=\sqrt{36}=6\)
\(\frac{2c^2}{2\cdot4^2}=4\Rightarrow2c^2=4\cdot2\cdot4^2=128\Rightarrow c^2=128:2=64\Rightarrow c=\sqrt{64}=8\)
vậy a = 4
b = 6
c = 8
a)
a:b:c = 2:4:5
=> a/2 = b/4 =c/5
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a}{2\cdot2}=\frac{b}{4}=\frac{c}{5}=\frac{2a-b+c}{2\cdot2-4+5}=\frac{7}{5}\)
\(\frac{2a}{2\cdot2}=\frac{7}{5}\Rightarrow2a=\frac{7\cdot2\cdot2}{5}=\frac{28}{5}\Rightarrow a=\frac{28}{5}:2=\frac{14}{5}=2,8\)
\(\frac{b}{4}=\frac{7}{5}\Rightarrow b=\frac{7\cdot4}{5}=\frac{28}{5}=5,6\)
\(\frac{c}{5}=\frac{7}{5}\Rightarrow c=\frac{7\cdot5}{5}=7\)
vậy a = 2,8
b = 5,6
c = 7
ta có :
\(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}=\frac{12a}{18}=\frac{12b}{16}=\frac{12c}{15}=\frac{a}{18}=\frac{b}{16}=\frac{c}{15}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{18}=\frac{b}{16}=\frac{c}{15}=\frac{a+b+c}{18+16+15}=\frac{49}{49}=1\)
\(\frac{a}{18}=1\Rightarrow a=18\)
\(\frac{b}{16}=1\Rightarrow b=16\)
\(\frac{c}{15}=1\Rightarrow c=15\)
ta có :
\(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}=\frac{12a}{18}=\frac{12b}{16}=\frac{12c}{15}=\frac{a}{18}=\frac{b}{16}=\frac{c}{15}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{18}=\frac{b}{16}=\frac{c}{15}=\frac{a+b+c}{18+16+15}=\frac{49}{49}=1\)
\(\frac{a}{18}=1\Rightarrow a=18\)
\(\frac{b}{16}=1\Rightarrow b=16\)
\(\frac{c}{15}=1\Rightarrow c=15\)
a) Ta có : \(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}\)\(\Rightarrow\frac{12a}{18}=\frac{12b}{16}=\frac{12c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{12a}{18}=\frac{12b}{16}=\frac{12c}{15}=\frac{12a+12b+12c}{18+16+15}=\frac{12\left(a+b+c\right)}{49}=\frac{12.49}{49}=12\)
\(\Rightarrow\hept{\begin{cases}a=12.3:2=18\\b=12.4:3=16\\c=12.5:4=15\end{cases}}\)
vì 2a/3=3b/4=4c/5 nên để chia hết cho 3,4,5 ta phải có hàng đơn vị ghép vào chia hết cho các số
24/3=32/4=40/5 hoặc 27/3=36/4=45/5
vậy a=4 hoặc 7
b=2 hoặc 6
c=0 hoặc 5
Ta có :
a:b:c=3:4:5
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
\(\Rightarrow\begin{cases}a=3k\\b=4k\\c=5k\end{cases}\)
Thay vào biểu thức ta được :
\(\frac{5a^2+2b^2-c^2}{2a^2+3b^2-2c^2}=\frac{5.9.k^2+2.16.k^2-25.k^2}{2.9.k^2+3.16.k^2-2.25.k^2}=\frac{k^2\left(45+32-25\right)}{k^2\left(18+48-50\right)}=\frac{52}{16}=\frac{13}{4}\)
\(a\div b\div c=2\div5\div3\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{2a+b-4c}{4+5-12}=\frac{-21}{-3}=7\)
\(\frac{2a}{4}=7\Rightarrow a\frac{7\times4}{2}=14\)
\(\frac{b}{5}=7\Rightarrow b=7\times5=35\)
\(\frac{4c}{12}=7\Rightarrow\frac{12\times7}{4}=21\)
Vậy \(a=14;b=35;c=21\)
Chúc bạn học tốt ^^
Ta có : \(a:b:c=2:5:3\)
Từ đó : \(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}=\frac{2a+b-4c}{4+5-12}=\frac{-21}{-3}=7\)
\(\Leftrightarrow\frac{a}{2}=7\Rightarrow a=14\)
\(\Leftrightarrow\frac{b}{5}=7\Rightarrow b=35\)
\(\Leftrightarrow\frac{c}{3}=7\Rightarrow c=21\)
Vậy 3 số cần tìm là 14;35;21