Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{3}.x-\sqrt{75}=0\)
\(\Leftrightarrow\sqrt{3}.x-5\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{3}\left(x-5\right)=0\)
Vì \(\sqrt{3}\ne0\)
Nên : x - 5 = 0
Vậy x = 5.
b) Ta có : \(\sqrt{2}.x+\sqrt{2}=\sqrt{8}+\sqrt{32}\)
\(\Leftrightarrow\sqrt{2}\left(x+1\right)=6\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(x+1\right)-6\sqrt{2}=0\)
\(\Leftrightarrow\sqrt{2}.\left(x+1-6\right)=0\)
\(\Leftrightarrow\sqrt{2}.\left(x-5\right)=0\)
Vì \(\sqrt{2}\ne0\)
Nên x - 5 = 0
Suy ra : x = 5
chú ý\(x=\sqrt{x}^2\) tương tự với y , và các số tự nhiên dương
\(A=\frac{\sqrt{x}^2+2\sqrt{x}-3}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)}=\sqrt{x}+3\)
\(B=\frac{\left(2\sqrt{y}\right)^2+3\sqrt{y}-7}{4\sqrt{y}+7}=\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}=\sqrt{y}-1\)
\(C=\frac{\sqrt{x}^2\sqrt{y}-\sqrt{y}^2\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)
\(D=\frac{\sqrt{x}^2-3\sqrt{x}-4}{\sqrt{x}^2-\sqrt{x}-12}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)}\)
\(E=\sqrt{1+2\sqrt{5}+5}+\sqrt{\sqrt{5}-2\sqrt{5}+1}=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
=>\(E=1+\sqrt{5}+\sqrt{5}-1=2\sqrt{5}\)
CÂU CUỐI chưa làm đc
ý cuối cùng này :
\(D=\sqrt{13-4\sqrt{10}}+\sqrt{13+4\sqrt{10}}\)lấy bình phương 2 vế ta có
\(D^2=13-4\sqrt{10}+13+4\sqrt{10}+2\sqrt{13-4\sqrt{10}}\sqrt{13+4\sqrt{10}}\)
\(D^2=26+2\sqrt{13^2-16\sqrt{10}^2}\Leftrightarrow D^2=26+2\sqrt{9}\)
\(D^2=32\Leftrightarrow D=\sqrt{32}=4\sqrt{2}\)
\(\sqrt{x}=3\Rightarrow x=9\)
\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)
\(\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}=-2\Rightarrow x=\varnothing\)
a)\(\sqrt{x}=3\Rightarrow x=9\)
b)\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)
c)\(\sqrt{x}=0\Rightarrow x=0\)
d)\(\sqrt{x}=-2\Rightarrow x=4\)
\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}+3\)
\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)
\(\Rightarrow\sqrt{y}-1\)
\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)
\(\Rightarrow\sqrt{xy}\)
\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)
\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)
\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)
\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)
b,
+ Với \(x=0\) \(\Rightarrow PTVN\)
+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :
\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)
Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)
\(\Leftrightarrow t^2+18-16t+46=0\)
\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)
\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)
cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))
a) \(\sqrt{x+1}=x-1\) ( ĐKXĐ : x \(>0\) )
\(\Rightarrow x+1=\left(x-1\right)^2\)
\(x+1=x^2-2x+1\)
\(x^2-3x=0\)
\(x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) ( loại x = 0 do không thoả mãn ĐKXĐ )
Vậy nghiệm của pt là x = 3
b) \(x-\sqrt{2x+3}=0\) ( ĐKXĐ : x \(\ge-\dfrac{3}{2}\) , x \(\ne\) -1 )
\(x^2-2x-3=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\) ( Loại x = -1 do không thoả mãn ĐKXĐ )
Vậy nghiệm của pt là x = 3
c) \(\sqrt{x^2+2x+1}=5\)
\(\sqrt{\left(x+1\right)^2}=5\)
\(x+1=5\)
\(x=4\)
Vậy nghiệm của pt là x = 4
d) \(\sqrt{x-4\sqrt{x}+4}=3\) ( ĐKXĐ : x \(\ge\) 0 )
\(\sqrt{\left(\sqrt{x}-2\right)^2}=3\)
\(\sqrt{x}-2=3\)
\(\sqrt{x}=5\Rightarrow x=5\)
c) \(\sqrt{x^2+2x+1}=5\)
<=> \(\sqrt{\left(x+1\right)^2}=5\)
<=> \(\left|x+1\right|=5\)
Ta xét 2 TH :
* Khi \(x+1\ge0\) <=> x \(\ge\) -1
Ta có PT :
x + 1 = 5
=> x = 4 (TM)
* Khi x + 1 < 0 <=> x < - 1
Ta có PT :
- x - 1 = 5
<=> -x = 5+1
=> x = -6 (TM)
Vậy Tập nghiệm của Pt là : S = { -6 ; 4 }
d) \(\sqrt{x-4\sqrt{x}+4}=3\)
<=> \(\sqrt{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}\) = 3
<=> \(\sqrt{\left(\sqrt{x}-2\right)^2}\) = 3
<=> \(\left|\sqrt{x}-2\right|\) = 3
Ta xét 2TH :
* Khi \(\sqrt{x}-2\ge0< =>x\ge4\)
Ta có PT :
\(\sqrt{x-2}=3\)
<=> \(\sqrt{x}=5\) => x = 25 (TM)
* Khi \(\sqrt{x}-2< 0\Leftrightarrow x< 4\)
Ta có PT :
\(-\sqrt{x-2}=3\)
vì để \(\sqrt{x-2}\) được xác định thì \(\sqrt{x-2}\ge0\) => x \(\ge\) 0
nên => TH 2 không thỏa mãn
Vậy S = {25}
\(\sqrt{9}=3\)
\(\sqrt{25=3}\)
\(\sqrt{0}=0\)
\(-\sqrt{4}\)
a, \(\sqrt{x}\)=3 ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^{^{ }2}\)= \(^{3^2}\)
<=> x = 9
b, \(\sqrt{x}\)= \(\sqrt{5}\) ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^2=\left(\sqrt{5}\right)^2\)
<=> x = 5
c, \(\sqrt{x}=0\) ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^2=0^2\)
<=> x = 0
d, \(\sqrt{x}=-2\) ( đkxđ : \(x\ge0\))
vô nghiệm
Vậy k có giá trị nào của x ( tm đkxđ)
Bài 4 :
\(a,\sqrt{x-1}=2\)
=> \(x-1=2^2=4\)
=>\(x=4+1=5\)
Vậy \(x\in\left\{5\right\}\)
\(b,\sqrt{x^2-3x+2}=2\)
=> \(x^2-3x+2=2\)
=> \(x^2-3x=2-2=0\)
=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )
=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}\)
MÌNH Biết vậy thôi ,
Bài 4 :
c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)
\(\Leftrightarrow4x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+2x+1-4x-1=0\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)
+) Xét \(x\ge2\)
\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
\(\Leftrightarrow2=2\)( luôn đúng )
+) Xét \(1\le x< 2\):
\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\)( loại )
Vậy \(x\ge2\)
a , Ta có :
\(\Leftrightarrow\sqrt{7-x}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\7-x=x^2-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt có nghiệm là x = 3
b , c , d , e , f tương tự
a)
\(\sqrt{x}=4\Rightarrow x=4^2=16\)
c) \(x\in\varnothing\)
e) \(\sqrt{x}=6,25\Rightarrow x=\left(6,25\right)^2=39,0625\)
b) \(\sqrt{x}=\sqrt{7}\Rightarrow x=7\)
d) \(\sqrt{x}=0\Rightarrow x=0\)
Cách đánh đề độc lạ ghê:v
a: =>x=16
b: =>x=7
c: =>x thuộc rỗng
d: =>x=0
e: =>x=(25/4)^2=625/16