K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

a) \(\sqrt{x}>1\Leftrightarrow x>1\)

b) \(\sqrt{x}< 3\Leftrightarrow x< 9\)

Vì x không âm nên x={0;1;2;3;4;5;6;7;8}

9 tháng 8 2016

a)\(\sqrt{x}>1\Leftrightarrow\sqrt{x^2}>1^2\Leftrightarrow x>1\)

b)\(\sqrt{x}< 3\Leftrightarrow\sqrt{x^2}< 3^2\Leftrightarrow x< 9\)

9 tháng 8 2016

a)\(\sqrt{x}>2\Leftrightarrow\sqrt{x^2}>2^2\Leftrightarrow x>4\)

\(\sqrt{x}< 1\Leftrightarrow\sqrt{x^2}< 1^2\Leftrightarrow x< 1\)

19 tháng 6 2018

a) Bpt luôn đúng với mọi x không âm

b) đk: \(x\le2\)

Có: \(\sqrt{x}>\sqrt{2-x}\Leftrightarrow x>2-x\)
\(\Leftrightarrow2x>2\Leftrightarrow x>1\)

Kết hợp với đk, ta được: \(1< x\le2\)

5 tháng 6 2018

a/\(\sqrt{x}=7\)

\(\Leftrightarrow x=49\)

b/\(\Leftrightarrow x< 4\)(do x>0)

\(\Rightarrow x\varepsilon\left\{0;1;2;3\right\}\)

c/\(2x< 16\)

\(\Leftrightarrow x< 8\)

\(\Leftrightarrow x\varepsilon\left\{1;2;3;4;5;6;7\right\}\)

5 tháng 6 2018

a) \(2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)

\(\Leftrightarrow x=7^2\Leftrightarrow x=49\)

b) \(\sqrt{x}< \sqrt{2}\Leftrightarrow x< 2\)

c) \(\sqrt{2x}< 4\)

Vì \(4=\sqrt{16}\text{ nên }\sqrt{2x}< 4\text{ có nghĩa là }\sqrt{2x}< 16\)

\(\Leftrightarrow2x< 16\)

\(\Leftrightarrow x< 8\left(x\ge0\right)\)

3 tháng 4 2017

Với câu c, Thiên Anh nên thêm điều kiện để phần kết luận là: \(0\le x< 2.\)

1 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 8 2016

a) = 225 

b)  49

c) = 1 

d) 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 

k nha

a) \(\sqrt{x}=15\)

=> x = 152

 => x = 225

b) \(2\sqrt{x}=14\)

<=> \(\sqrt{x}=7\)

=> x = 72

=> x = 49

c) \(\sqrt{x}< \sqrt{2}\)

<=> x < 2

mà \(x\ge0\)

=> x= {0;1}

d) \(\sqrt{2x}< 4\)

=> 2x < 16

<=> x < 8

mà \(x\ge0\)

=> x = {0;1;2;3;4;5;6;7}

ok mk nhé!!!!!! 53654645756876969251353253434645655435436464556756252345345634

24 tháng 7 2020

Bài làm:

a) \(\sqrt{x}>1\Leftrightarrow\left(\sqrt{x}\right)^2>1^2\Rightarrow x>1\)

Vậy \(x>1\)

b) đk: \(x\ge0\) 

Ta có: \(\sqrt{x}< 3\Leftrightarrow\left(\sqrt{x}\right)^2< 3^2\Rightarrow x< 9\)

Vậy \(0\le x< 9\)