Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 2016x -1 = y-2015 - |y-2015|
2016x-1= y-2015-y-2015
2016x-1=0
2016x = 1
suy ra x = 0
a)Ta có:\(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\Rightarrow\left(x-1\right)\left(x+2\right)\le0\)(Do\(2x^2+1>0\)
suy ra x-1 và x+2 trái dấu
Mà x-1<x+2
\(\Rightarrow\hept{\begin{cases}x-1\le0\Rightarrow x\le1\\x+2\ge0\Rightarrow x\ge-2\end{cases}}\)
\(\Rightarrow-2\le x\le1\)
b)Ta có Nếu \(x\ge2\Rightarrow x^{2016}\ge2^{2016}>2015\left(L\right)\)
Do đó x<2 mà\(x\inℕ\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Với x=0 thì y=2015/2013(Loại)
Với x=1 thì y=2014/2013(Loại)
Vậy...............
Bài giải
a, \(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\)
Do \(\left(2x^2+1\right)\ge0\)
Nên để tích trên bé hơn hoặc bằng 0 thì \(\left(x-1\right)\) và \(\left(x+2\right)\) trái dấu hoặc bằng 0
Mà \(x-1< x+2\)
\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}}\Rightarrow\text{ }-2\le x\le1\)
Mà \(x\in N\text{ }\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)
Ta thấy:\(2015-|y-2015|=y\)nếu \(y\le0\)
và \(2015-|y-2015|=2015-y+2015\)nếu \(y>2015\)
Nếu \(y\le2015\)thì:
\(y-2015-|y-2015|=y-y=0\)
\(\Leftrightarrow y=0;1;2;3;4;...;2015\)( Vì y là số tự nhiên )
\(\Rightarrow x=0\)( Vì \(2016^0-1=0\))
Nếu \(y>2015\)thì:
\(y-2015-|y-2015|=y-2015-y+2015=y-y=0\)
\(\Leftrightarrow y=2016;2017;...;+\infty\)
\(\Rightarrow x=0\)
Từ cả 2 trường hợp ta có:
\(y=0;1;2;3;4;...;+\infty\)hay \(y=N\)
\(x=0\)
Ta có: (x - 2015)2 \(\ge\)0 \(\forall\)x => 8(x - 2015)2 \(\ge\)0 \(\forall\)x
=> 25 - y2 \(\ge\)0
<=> y2 \(\le\) 25
<=> |y| \(\le\)5
Do y \(\in\)Z => 0 \(\le\)y < 5
+) Với y = 0 => 25 - 02 = 8(x - 2015)2
=> 25 = 8(x - 2015)2
=> (x - 2015)2 = 25 : 8 (ko thõa mãn vì (x - 2015)2 là số chính phương còn 25 : 8 ko phải là số chính phương)
+)Với y = 1 => 25 - 12 = 8.(x - 2015)2
=> 24 = 8.(x - 2015)2
=> (x - 2015)2 = 24 : 8 = 3 (ko thõa mãn)
+) Với y = 2 => 25 - 22 = 8(x - 2015)2
=> 21 = 8(x - 2015)2
=> (x - 2015)2 = 21 : 8 (ko thõa mãn)
+) Với y = 3 => 25 - 32 = 8(x - 2015)2
=> 16 = 8(x - 2015)2
=> (x - 2015)2 = 16 : 8 = 2 (ko thõa mãn)
+) Với y = 4 => 25 - 42 = 8(x - 2015)2
=> 9 = 8(x - 2015)2
=> (x - 2015)2 = 9 : 8 (ko thõa mãn)
+) Với y = 5 => 25 - 52 = 8(x - 2015)2
=> 0 = 8(x - 2015)2
=> (x - 2015)2 = 0
=> x - 2015 = 0
=> x = 2015
Vậy {x;y} thõa mãn là {2015; 5}
b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha
a)x=0 , y=5