K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

\(\frac{1}{10}< \frac{x}{11}< \frac{1}{5}\Rightarrow\frac{11}{110}< \frac{x}{110}< \frac{22}{110}\Rightarrow x\in12;...;21\)

21 tháng 11 2016

256/56

chắc chắn lun

4 tháng 11 2017

Be Chip

256/56 nhà bán

k tui nha 

thank

4 tháng 3 2018

1. \(\frac{-7}{12}\)\(\frac{x-1}{4}\)\(\frac{2}{3}\)

=> \(\frac{-7}{12}\)\(\frac{3.\left(x-1\right)}{12}\)\(\frac{8}{12}\)

=> 3 . ( x - 1 ) thuộc { - 6 ; - 5 ; - 4 ; - 3 ; - 2 ; - 1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7}

Lập bảng tính giá trị x , cái này dễ lên bạn tự làm nha

4 tháng 3 2018

1/ \(-\frac{7}{12}< \frac{x-1}{4}< \frac{2}{3}\)

hay \(\frac{-7}{12}< \frac{3.\left(x-1\right)}{12}< \frac{8}{12}\)

Vậy \(-7< 3.\left(x-1\right)< 8\)

Vậy \(3.\left(x-1\right)\in\left\{-6;-5;-4;...;7\right\}\)

mà \(x\in Z\)nên \(3.\left(x-1\right)⋮3\)

Vậy \(3.\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)

hay \(x-1\in\left\{-2;-1;0;1;2\right\}\)

tới đây dễ rồi thì làm nốt nhé, để thời gian làm mấy câu sau!

30 tháng 4 2019

Bài 1 :

\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\cdot\frac{24}{50}=1\)

\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)

                            #Louis

30 tháng 4 2019

\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)

\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)

\(\frac{12}{25}x=1\)

Đến đây dễ rồi :)))

Bn tự tính típ nha

8 tháng 8 2016

\(\frac{58}{27}.\frac{54}{29}< x< \frac{100}{3}-\frac{9}{13}\)

\(4< x< 32\frac{25}{39}\)

\(=>x\in\left\{5;6;7...;32\right\}\)

K cho mik với nhé 

7 tháng 3 2018

Bạn tham khảo nhé 

\(a)\)Đặt  \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm ) 

Vậy \(A< 1\)