Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(x^3=x^2\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
+) \((7x-11)^3=2^5.5^2+200\)
\((7x-11)^3=2^3.2^2.5^2+2^3.5^2\)
\((7x-11)^3=2^3.5^2.(2^2+1)\)
\((7x-11)^3=2^3.5^2.5\)
\((7x-11)^3=2^3.5^3\)
\((7x-11)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(7x=21\)
\(x=3\)
+) \(3+2^{x-1}=24-[4^2-(2^2-1)]\)
\(3+2^{x-1}=11\)
\(2^{x-1}=8\)
\(2^{x-1}=2^3\)
\(\Rightarrow x-1=3\)
\(x=4\)
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
1a.4,9,16,25,36,49,64,91,110,121,144,169,400,900,1600
b. 8,27,64,125,1000
C1111^2=1234321
2. x=6 ,x=3,x=0, x k thuộc n, x k thuộc n
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018
Bài 9,
62x73+36x33=36x73+36x27=36(73+27)=36x100=3600.
197-\([\)6x(5-1)2+20220\(]\):5=197-\([\)6x16+1\(]\):5=197-97:5=197-97/5=888/5.
Bài 10,
21-4x=13
=>4x=21-13=8
=>x=8:4=2.
30:(x-3)+1=45:43=42=16
=>30:(x-3)=16-1=15
=>x-3=30:15=2
=>x=2+3=5.
(x-1)3+5x6=38
=>(x-1)3+30=38
=>(x-1)3=38-30=8=23
=>x-1=2
=>x=3.
\(3^x+4^2=19^6:\left(19^3.19^2\right)-2.1^{2014}\)
\(\Rightarrow\) \(3^x+16=19^6:19^5-2\)
\(\Rightarrow\) \(3^x+16=19-2\)
\(\Rightarrow\) \(3^x+16=17\)
\(\Rightarrow\) \(3^x=1\)
\(\Rightarrow\) \(3^x=3^0\)
\(\Rightarrow\) \(x=0\)
Lời giải:
$1+2+2^3+2^4+2^5+...+2^{x+1}=1023$
$2^3+2^4+2^5+...+2^{x+1}=1020(1)$
$2^4+2^5+2^6+...+2^{x+2}=2040(2)$
Lấy (2) trừ (1) theo vế suy ra:
$2^{x+2}-2^3=2040-1020=1020$
$2^{x+2}=1028$
Với giá trị này sẽ không tồn tại số tự nhiên x. Bạn xem lại đề.