K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009 }\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{x+1-1}{x+1}=\frac{2008}{2009}\)
\(\frac{x}{x+1}=\frac{2008}{2009}\)
\(2009x=2008\left(x+1\right)\)
\(2009x=2008x+2008\)
\(2009x-2008x=2008\)
\(x=2008\)
Vậy x=2008

4 tháng 5 2016

Ta có

1/x.(x+1) =2008-1/1.2-1/2.3-....

tự làm nhé!!

24 tháng 4 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}\div2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}\)

\(\Rightarrow\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)

\(\Rightarrow x+1=2009\)

\(\Rightarrow x=2008\)

24 tháng 4 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=>\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2007}{4018}\)(nhân cả hai vế với \(\frac{1}{2}\))

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)\(\frac{2007}{4018}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\frac{1}{x+1}\)=\(\frac{1}{2}-\frac{2007}{4018}\)

\(\frac{1}{x+1}=\frac{1}{2009}\)

x+1=2009

x=2009-1=2008

Vậy x bằng 2008

18 tháng 4 2019

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Em tham khảo nhé!

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=>\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2=\frac{2007}{4018}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}=\frac{2009}{4018}-\frac{2007}{4018}\)

=> \(\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)

=> \(1\cdot2009=1\left(x+1\right)\)

=> \(x+1=2009\Rightarrow x=2009-1=2008\)

Vậy x = 2008

Chúc bn hk tốt !

17 tháng 4 2016

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1000}{2002}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1000}{2002}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2002}\)

<=>x+1=2002

=>x=2001

18 tháng 2 2021

dap an :

X=X

25 tháng 3 2016

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)

\(\Rightarrow x=2\)

14 tháng 10 2016

\(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2011}:2\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2011}\)

\(\Leftrightarrow x+1=2011\)

\(\Leftrightarrow x=2010\)

14 tháng 10 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{1}{x\times\left(x+1\right)\div2}=\frac{2009}{2011}\)

\(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.......+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2009}{2011}\)

\(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(1-\frac{2}{x+1}=\frac{2009}{2011}\)

\(\frac{2}{x+1}=1-\frac{2009}{2011}\)

\(\frac{2}{x+1}=\frac{2}{2011}\)

\(x+1=2011\)

\(x=2011-1\)

\(\Rightarrow x=2010\)